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Chapter 1

The Feynman Path Integral

1.1 The Idea

Modern elementary particle physics and field theory tend to describe quantum mechanical
phenomena in either of two ways:(i) The traditional operator or Hilbert space formulation,
or (ii) the path integral formulation invented by Feynman in the late 1940’ies (with earlier
ideas in the same direction by Dirac).

Although this latter formulation led Feynman to “derive” the Feynman rules of Quan-
tum Electrodynamics in an attractive, intuitive way, his path integral formulation of
quantum theory enjoyed little popularity before the 1970’ies. However, in the early 70’ies
this situation was rather radically changed for several reasons. First it became gradually
clear that gauge field theories represented the right language within which to understand
the “fundamental” forces of electromagnetism, weak interactions and strong interactions.
For the last two, non-Abelian gauge theories were required, finally leading to the famous
Standard Model based on the gauge group

SUB)c@SUR2)w @U(1)w

(C stands for “colour” and W for “weak”). And it turned out that the technical problems
of quantizing non-Abelian gauge theories were handled far more efficiently and elegantly
in the path integral formulation.

In a separate development it was becoming clear that there was a very deep similarity
between statistical mechanics of a (D + 1)-dimensional system on the one hand and a
quantum theory of a closely related D-dimensional system (with the extra dimension being
time) on the other. The relation involves “going to euclidean time”, meaning considering
purely imaginary values for the time-coordinate. This device had previously been much
applied in connection with the practical evaluation of Feynman-diagrams involving loops
— the so-called Wick-rotation — but now it took on a more significant role. It lead to two
major improvements in people’s understanding of field theories.

First it provided a very convenient new framework for mathematically rigorous studies.
The idea was to consider the euclidean field theory “on a lattice”, i.e. replacing continuous
space-time by a discrete set of points, thereby providing what is known as an ultra violet
cut-off in the theory. To recover the continuum field theory involves a very interesting
process, whereby one first has to identify a 2nd order phase transition in the statistical
system, at which point correlation lengths grow to “infinity” measured in lattice units.
This phenomenon may then be reinterpreted in the continuum field theory language by
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regarding instead the lattice-distance as shrinking to zero while keeping the physical
correlation length fixed in physical units.

This leads to the second benefit: An entirely new insight was provided on the process
of renormalization of a quantum field theory. Previously to most people (including Dirac
to his death!) renormalization represented a rather suspicious, dirty physicist’s procedure
for sweeping divergent (i.e. meaningless) loop-integrals under the rug. Now, thanks to
work by Wilson in particular, the renormalization process could be treated in a way that
was both much more physically and mathematically convincing, and at the same time it
was related in an exciting way to critical phenomena in statistical mechanics.

Another major advantage of the path integral quantization is its intuitive appeal: one
gets a kind of picture of how a quantum mechanical amplitude is built. It does not at
all remove the mysteries of quantum theory, rather it highlights them, but one gets the
added intuition.

In the coming several chapters we shall also see examples of how powerful the formalism
is: many famous results can be obtained with remarkable ease in the scheme. At this
point however, a word of warning should be sounded: The path integral formalism has
a tendency to “seduce” one into formal manipulations which are not always justifiable
in a more careful analysis. It should always be kept in mind that the manipulations we
carry out are to be understood in a framework where a cut-off has been provided (for
instance by means of a lattice). And the limit whereby the continuum is recovered has
to be carefully analyzed. This is renormalization theory which will be treated only in
the second part of the course. Despite this warning it remains very useful to present
derivations in such a somewhat simplified manner. After one has studied renormalization
theory, one should know in principle at what points care is especially needed.

Last but not least the euclidean path integral formulation has opened up for computer
stmulations which have become possible because the system one studies is equivalent to
a statistical mechanical system and complex amplitudes are replaced by positive defi-
nite probability distributions, easy to simulate in computer work. At the moment this
technique seems to be the most promising one whereby one can study non-perturbative
phenomena such as quark confinement in QCD. But the scope of computer simulations is
much wider than just that.

As a result of all these nice features, the situation around 1980 appeared to be that the
path integral formulation was perhaps going to be the only remaining formulation of quan-
tum theory in the future. But developments in the 1980’ies have countered that trend. In
fact, one of the outgrowths of string theory has been the so-called two-dimensional con-
formal field theories, introduced by Belavin, Polyakov and Zamolodchikov. Such theories
are required in the path integral description of quantum strings: the string traces out a
2-dimensional (one space - one time) surface, the string world-sheet, and things like the
position of a point on the string may be regarded as a field variable on this 2-dimensional
surface. For “asymptotic” strings, or strings representing fluctuations around a given
“string vacuum” (representing space-time among other things — it is not the purpose
here to explain string theory so we leave several notions hanging in the air) the ensuing
field theory is invariant under conformal transformations of the world sheet coordinates:
it is a conformal field theory. The same turns out to be true with the theories arising in
the above mentioned limit of a critical 2-dimensional system.

An amazing fact which has been realized in the 1980’ies is that the set of these confor-
mal field theories not only have a tremendously rich structure but also that in infinitely
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Figure 1.1: The famous double slit “experiment”. The amplitude to find the particle at
the point, X, is the sum of two sub-amplitudes, representing in turn the amplitudes for
the particle to develop its history along the two paths, (1) and (2).

many (nearly all?) cases they can be solved ezactly, a rare case in the past for a nontriv-
ial theory. The key ingredient in the possibility of exact solution is the existence of an
infinite dimensional algebraic structure representing conformal invariance (and general-
izations thereof). It now turns out that such theories are best formulated in the operator
formulation of quantum theory. In fact in most cases it is completely unknown what ac-
tion would be needed as a starting point for a path integral formulation (see below). Nor
is there any need to introduce a cut-off and carry out a renormalization procedure: one
is dealing with the final renormalized theory ab initio, it is not intrinsically defined via a
singular limiting procedure. (Nevertheless it should also be stressed that very interesting
comparisons have been made in some of those cases where both formulations are possible.)

In short, the moral for the student of quantum field theory in the 1990’ies is that some
knowledge of both the operator formulation and the path integral formulation is necessary.
In this course we shall concentrate on the latter but derive it from the former and make
correspondences between the two from time to time.

We finish these introductory remarks by a brief indication of the ideas that led Feynman
to the path integral.

Let us consider the famous double slit experiment which illustrates some of the very
peculiar features of quantum mechanics, fig. 1.1. As is well known, electrons from the
source will form an interference pattern on the photographic plate when both slits are
open, but not when only one is. We concentrate on the first case. The standard treatment
in quantum mechanics starts from the wave-nature of the electron and uses Huygen’s
principle to work out the interference of elementary waves emanating from the two slits.
This calculation produces an amplitude, the (absolute) square of which is the probability
to find the electron at a certain point on the plate.

Feynman’s observation was that we may calculate the very same amplitude using
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seemingly quite different notions, namely thinking of the electrons as particles rather
than waves, but accepting that there is an amplitude somehow for the electron to go
through slit 1 and a different amplitude for it to go through slit 2, given that it ends up
at the same point on the photographic plate. These are the two paths in fig. 1. Thus we
would build the total amplitude as

A(total) = A(path 1) + A(path 2)

Naturally the values of the amplitudes have to be the same as the values of the waves in
the first calculation, and Feynman observed that this value could be interpreted as

A(path;) = erS(Path))

Here S is the action of the system. It plays a fundamental role in the path integral
formulation. It may be given as the time integral along the path of the lagrangian, L(g;, ¢;)
with {¢;} being a set of (generalized) coordinates and {¢;} the associated velocities. Then

S(path) = [ L(ai(t), (1))
path
where the path is defined by the map:

t +— ¢;(t), t € some time interval

Given one set of boundary conditions (in our case that the electron leaves the source and
hits the plate at a given point), there is a unique classical path, namely the one which
minimizes the action. It is given by that solution to the Euler-Lagrange equations of

motion:
d OL B oL

dt oG dg
which has the right boundary conditions. For a simple non-relativistic particle of mass m,

moving in a conserved force field described by a potential V' (g;), the Lagrangian is given
by

L(g;, ¢s) = quJ
giving of course Newton’s 2nd law
mg; = =0V (q;) = F;

(0; = 0/0q¢;) but this is special for non-relativistic mechanics. In general we should just
think of the action as some Lorentz-invariant functional of the path. Different functionals
give rise to different theories. In practice we shall also require the existence of a lagrangian.

Feynman was intrigues by the fact that classically only an infinitesimal amount of the
information stored in the action is physically relevant: only the path for which the action
is extremal (usually minimal) is of interest.

But now we are led to conjecture (and prove in section 1.3) that a quantum mechanical
amplitude may be represented as

A= ¥ o7 S(path)
all paths
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where the sum goes over physical as well as unphysical paths (classically speaking). They
should all, however, conform to appropriate boundary conditions, specifying what am-
plitude more precisely we want to calculate. In general the amplitude will describe the
transition between two states, and the boundary conditions should contain the same sort
of information that is needed to specify the states. This will be the subject of some dis-
cussion in coming sections. Also we shall have to make more precise what “the sum over
all paths” actually means. It is perhaps clear that such a strange object can only be given
a meaning after the introduction of a “cut-off”, and a subsequent limiting procedure. In
field theory the problem is far more complicated still, by the fact that instead of a finite
number of degrees of freedom, such as we have here — the ¢;’s —, we have an infinite num-
ber of degrees of freedom, namely one or more field values at each space point, ¥: ¢;(t) is
replaced by ¢, (%, ), so that the discrete index, i is replaced by the continuous “index”, &
(possibly in association with one or more discrete indices, here collected in the letter, r).
Again we see the need for a cut-off. This of course is at the centre of renormalization in
field theory.

We emphasize that with this path integral formulation of quantum theory, all objects
involved are like “classical” ones: fields for example take ordinary numerical values, they
are not operators. The difference from classical mechanics is that not only the classical
path, satisfying the classical equations of motion, is included in the “sum over paths”:
all paths are. This provides a somewhat intuitive feel for what “quantum fluctuations ”
mean.

Another interesting intuitive qualitative consequence of Feynman’s expression for the
amplitude follows immediately:

Consider a situation where quantum mechanics plays a minor role. What does that
mean? We see that it means that the “typical action” is much larger than the fundamental
Planck action quantum, A. In that case, namely we may expect that contributions in the
sum over all paths have a tendency to wash out — cancel, because the phase exp[iS/h]
varies rapidly for different paths: two neighbouring paths will have action values differing
by many units of 2. The only exception to this argument is for paths in the neighbourhood
of the classical path: here neighbouring paths have essentially the same value of S since
by definition the action is stationary (minimal) here. Hence the path integral should be
dominated by the classical path in these “near classical” situations. In this sense classical
mechanics can be said to be a consequence of the path integral in the appropriate limit.
This should help us to accept the path integral formulation of quantum mechanics as a
fundamental starting point.

1.2 The Action

1.2.1 Local Field Theories

In this course we shall deal with quantum field theories for which we can write down an
action, so that we can get the path integral machinery to work. Further we shall restrict
ourselves to local theories. Let us explain what this means, and provide some examples.

First we require the physical system, i.e. our field theory, to be specified by “(very)
generalized coordinates”, namely: a classical configuration of the system at a given time,
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t, is specified by a field, a map
(t, %) = ¢p(t,7)

where the field ¢, takes values in a certain set, often denoted the target space. In the
simplest case of a scalar field, this is just the set of real or complex numbers. For electro-
magnetism we would rather use the 4-vector potential, A* taking values in the (vector-)
space of objects that transform as 4-vectors under Lorentz transformations. In that case
the situation is further complicated by gauge-invariance which makes the precise defini-
tion of the target space somewhat more involved. Other complications will be met in
later sections where we introduce Grassmann-numbers (“anticommuting numbers”, see
chapter 3.) appropriate for the description of fermionic fields, such as the electron field
t(x). Such a field is further characterized by belonging to the set of Dirac 4-spinors
(in 4-dimensional space-time). For the gauge field theories of the standard model, the
degrees of freedom, i.e. the generalized coordinates on the target space, are in a certain
sense geometrical: things like the gauge potential A#(x) or the Fermi field ¢)(z) are to be
compared to connections and vector fields, described by coordinates on an abstract differ-
entiable manifold. Only the “geometrical properties” of the manifold are the real degrees
of freedom. In practice this situation is dealt with as in geometry: one uses coordinate
descriptions (here A* and 1) but demands geometric (here physical) properties to be
independent of coordinate transformations, here: gauge transformations. Complications
arising from these effects will be treated in detail in the second part of this course.

Having identified the configuration space, namely the set of maps (fields) from space-
time (Minkowski- or otherwise, see later) to the target space, for the kind of systems (field
theories) we shall be dealing with, we now give an idea of the kind of actions we shall
have in mind.

In general the action is a functional of a field: a given field development in space and
time is mapped into one number, the action. It is given as the time integral over the
Lagrangian:

Slor) = [ deLl6, (¢, ), 6 (¢, )

where the lagrangian, L itself is a functional of the field configuration, one, however,
that only depends on the field values at a given time. Thus a Lorentz-non-invariant,
inertial-frame-dependent object, contrary to the action, which is fully invariant under
Lorentz-transformations.

To the reader, who asks: Why? Well, invariance of the action is taken as an axiom. In practice
we construct relativistically invariant theories by providing invariant action-functionals.

We furthermore restrict ourselves to local theories for which the lagrangian can be
expressed as a local integral over the lagrangian density, £. That in turn is taken to be an
ordinary function of the field values and a finite number of field derivatives (in practice
we shall restrict ourselves to the first order derivatives), all referred to a given space-time
point x:

;C - £(¢r(x)7 au¢7"(x))
Then, for

(a;‘) = (xu) = (l‘o,l‘l,:L‘Z,l‘?’) = (t7 f)
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we have
Lo () = [ d*2L(60(2), Bun(2))

and the action takes the invariant form
Slo] = [ d'sL(@,(x), 0,6, (2))

showing that the lagrangian density is a convenient, invariant object, like the action itself,
but contrary to the lagrangian.

Notice, that in units where i = ¢ = 1, the action is dimensionless (like /1) whereas
L has dimension L=¢ = E? where d is the dimension of space-time and L and E denote
lengths and energies, respectively. It is often of interest to consider field theories in space-
time dimensions other than 3+1. Most of the examples given below will make immediate
sense for general d.

Our convention for Minkowskian metric etc. is as follows: upper (covariant) and lower
(contravariant) Lorentz indices, usually denoted by small greek letters, are raised and
lowered by the Minkowski-metric

100 0
w0100
T =T =1 00 1 0
0001
So
n, =0,

We use the notation
0, = 0/0z", 0" = 0/0x,

k-xzk“x”:kux“:lz-f—koxo
Hence, for the 4-momentum p of a particle of mass m we have

p? = —m?

We now provide a sample of actions (or lagrangian densities, rather) for various field
theories to illustrate the sort of things we have been describing:

1. Scalar field theory

We take the field configuration to be specified by a number R € N of real, scalar
fields ¢, (z), r =1, ..., R.

We consider £ being a sum of terms (summation on r implied):

L=Ly+Lr+ Ly

where
Lo = —5(0,00(0)0"6,(x) + m26. ()6, (x)
N
Lr = XY A6 (@) bnla) . by, (@)
n=3{r;}

L; = J.(v)p,(x) (1.1)
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Here £, describes a free non-interacting part quadratic in the fields (see later), L
describes the self-interactions among the scalar fields of at least cubic power in the
fields, and L is a source term, linear in the fields, describing in a generic way how
the fields could couple to external sources, J,.(x). In practice such source terms will
allow a mathematically convenient way of producing generating functionals for field
theory amplitudes: Greens functions, S-matrix elements, etc.

In 4-dimensional space-time (and higher) most of these theories turn out to be
inconsistent as quantum-field theories unless

)\gfi)} =0, forn >4

Only then will they be renormalizable. We refer to the second part of the course for
discussion. A famous example for R = 1 is the A¢*-theory:

1 A
Lagr = —5[0u00"6 +m?¢”] + E¢4
In 2-dimensional space-time another famous example is the Liouville theory

1
LLiouville = ~50n00"6 + p’e”

In 2 dimensions there is no restriction coming from renormalizability on the maximal
power N above in the self-interactions.

. U(1)-gauge theory of Dirac Fermions: QFED

— 1

Larn = —B(@)P +ml(z) - 1 Fu ()P (2)

Here ¢(z) is a Dirac-spinor (Grassmann-number valued, see Chapter 3),
D, =0, —ieA,(x)

is a gauge-covariant derivative with A,(z) being the gauge potential and e the
coupling constant to the field . Finally

Fuw(x) = 9, A, () = 8, A, ()

is the field strength tensor. The slash through the covariant derivative involves the
notation
4= a,Y"
where the 7#’s are the Dirac gamma-matrices, satisfying the (anti-) commutation
relations
{%H ’VV} = 277#1/[
with I the 4 x 4 unit matrix (in 4 dimensions).

vi=7 =7

and

Y% =-7"=-
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in this metric. Notice that the lagrangian (density) may be written as a free Fermi
part, bilinear in v, a free “photon” part, bilinear in A,’s and an interaction part
trilinear in fields. This split-up will be used for developing perturbation theory,
however it breaks the gauge-invariance otherwise possessed by the theory. Also, to
actually carry out the perturbation theory programme, additional “gauge-fixing”
terms will have to be considered. However, none of that will concern us here.

3. The Yukawa coupling

In the Standard Model, mass-terms for all fundamental fields are forbidden by gauge-
invariance. However, by couplings to “Higgs”’-fields with non-vanishing vacuum
expectation values, field excitations nevertheless may appear massive. The coupling
of Fermions to scalars is provided by so-called Yukawa terms of a form like

Lyukawa = 9:9 ()Y ()9 (2)

So that for a scalar field ¢, (z) constant in space and time, this indeed looks like a
mass term. g, is a coupling constant.

4. Non-linear sigma model

In this example, the target-space of the field is a group-manifold, or more precisely,
the set of matrices which form a certain representation of the group:

r — gii(z)

where ¢, j are matrix indices running from 1 to the dimension of the representation
in question. A possible lagrangian with interesting group invariance properties is

Lypsu = Tr[0,97"0"g]

5. The FEinstein-Hilbert action

In all of the above examples, space-time was assumed to be Minkowskian, so that
the space-time metric is given by 7,,. In most cases, however, it is relatively straight
forward, using the methods of general relativity, to generalize the actions into gen-
erally covariant forms, valid in an arbitrary gravitational background space-time,
given by a metric tensor g,,(x). It is also well known that we may write down an
elegant action for gravity itself, namely the Einstein-Hilbert action

Sen = /d4$\/ —g(z)R(x)

where g(z) denotes the determinant of the metric tensor and R(x) the curvature
scalar. It turns out, however, that this action does not lead to a renormalizable
quantum field theory of gravity. That a theory is non-renormalizable, really means,
that in principle many different consistent quantum theories could result in the
same “low-energy” semi-classical theory. Each of these different theories contain
their own new physics. Which one of the possibilities is the correct one, cannot
be decided merely by the fact that it reproduces Einstein gravity. Thus quantum
gravity must be dealt with in a profoundly different way, possibly via string theory.
In this course we shall not consider quantum gravity.
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These examples should provide some idea of the kind of situations we shall be interested
in. I this first part of the course we shall try to be rather general and mostly not have
any one particular field theory in mind, even though the general techniques will often be
treated by way of an example field theory.

1.2.2 Functional Methods.

A large part of this course will be taken up by perturbation theory. This may be seen as a
way of allowing in a systematic way for field configurations in the neighbourhood of the
classical solution. Hence, even though we are concerned with quantum field theory, the
classical solutions will play a crucial role.

A classical solution to a field theory is singled out by two requirements: (i) It cor-
responds to definite boundary conditions reflecting the physics of the situation, and (ii)
it minimizes the action under the given set of boundary conditions. The second require-
ment leads to the Euler-Lagrange equations of motion, which we now consider. Let ¢, (x)
denote a generic set of fields, and let £ = L(¢,,0,¢,). We now work out a variation of
the action corresponding to fixed boundary conditions:

3S(¢,) = /dd 6¢r ) + 0L (7))

a@ 90,0,)
0L oL i
= [ % a@ o505y 100 (2) (1.2)

Here, in the second term we did the following

1. We used §0,¢,(z) = 0,0¢,(x) which follows from
00u0r (1) = 0,[¢r (1) + ¢ (2)] — D (7)

2. We performed a partial integration for fixed boundary conditions. This allowed us
to discard the boundary terms in the partial integration (since d¢, () vanishes on
the “boundaries”).

The above expression for the variation of S has to be valid for arbitrary field variations.
This gives the EL-equations of motion:

oL 9 oL
¢, "0(0udr)
Now let us use the derivation of the equations of motion as an excuse to introduce some

functional techniques and notation. In following sections this will prove very convenient.
First let us introduce the functional derivative. To motivate the definition, consider first

=0 (1.3)

an ordinary set of variables {x;}, i = 1,2,.... When these are independent we clearly
have 5
T
' — 4,
6xj
Actually we may use instead the name {¢;} for the variables and write
O
o

99,
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We may also think of a fized set of the variables as a map from the integers, i € N to the
real or complex numbers:
L=
Our variables, {¢;}, correspond to the set of all possible such maps.
Now we generalize this to maps from space-time points (x) in d dimensions to some
target space. Such maps are our fields. And we define the functional derivative by the

rule
3¢, (x) B
6¢s( ) 5 (1‘ y)(STS

This formalism in fact is really nothing but a particularly convenient way of doing varia-
tional calculus. As an example, consider the (highly unrealistic) case where the lagrangian
density is independent of field derivatives. And consider one field only. Then for the action

= [ d'aL(o(x))

we may rederive the variation in the new language as

TG PO 7

oo (y) Op(x) d9(y)
B /d xaqﬁ(x) (z=y)
oL

00(y) (-4
We see that the idea of the functional derivative is nothing but a convenient way of
doing variational calculus. Now, to actually get something analogous to the equations
of motion, we must understand also the 0, type terms. Therefore, quite generally let us
consider linear operators on (classical) fields. These may be thought of as generalizing
linear operators on vectors, (¢;):

A ¢z ZAZ]¢]

showing how the linear operator is realized as a matrix.
Analogously for fields ¢(z) rather than finite dimensional vectors (¢;), we may think
of linear operators in terms of “functional matrices” or integration kernels:

A p(x) = (Ag)(x /ddyA z,y)p(y)

Very often we shall use a similar idea also when the functional matrices are actually
distributions. As a good example, consider the derivative operation, which indeed is
linear:

00 0(a) o> B,0(0) = [ty 20"~ 4)(0) = [y 6w~ 1)o0)

One sees by partial integration (provided that is allowed without boundary terms!) that
also the last expression gives the correct result. Thus 0, has the integration kernel (func-
tional matrix element)

0

Ou(r.y) = 50w = y) =~ '(w — )
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Notice that when we differentiate a vector with respect to a vector-coordinate, the
result is a matrix: 5

Ax Apmry, = A
A = g 3 A = o
In a very compressed matrix notation we may sometimes write this as
0
—Ar=A
ox

Similar compressed notations are sometimes used in the functional case. For example we
might write

)
o "
as a short hand of the expression with the kernel distribution. When in doubt one should

always reintroduce the “generalized matrix elements” explicitly as above.
Now we may summarize the variational calculation leading to the equations of motion

s 5 oL oL
@ Y = 36w %6 w)

And we may conclude that the classical field is the one, which (i) satisfies the appropriate
boundary conditions, and (ii) for which the functional derivative of the action with respect
to the field vanishes identically.

Finally we mention that we may construct the hamiltonian density as follows. First
we find the momentum density conjugate to the field ¢,.(z) as

0,6 =0,

(o) = 2£_ 9519 (1.5)
0¢,(x) ¢, (x)
then the hamiltonian density is given by
%(¢r( ) 0; (]57‘ r Z'/Ts s - L (16)

where it is understood that when ¢, (z) appears in what remains on the right hand side
it should be reexpressed in terms of 7,(x) using the definition.

1.2.3 Free Field Theory as a Sum of Harmonic Oscillators

In sections 4 and 5 we shall treat in detail the harmonic oscillator from various points
of view. It may seem strange that one has to study a one dimensional non-relativistic
mechanical system in order to learn about relativistic quantum field theory. However,
as we shall now illustrate, a relativistic, free field (with an infinite number of degrees of
freedom) is equivalent to an infinite set of harmonic oscillators. The intuitive physical
reason is not surprising: we can set up harmonic plane waves in the field, ones for every
choice of momentum (i.e. wave-) vector. This should motivate our efforts later on.

For simplicity we concentrate on a single scalar field with lagrangian (density)

£(6) = 5 (080”6 + m*¢?) L7)



1.2 10015 AU LIUIN

It is trivial to work out the equations of motions and find the Klein-Gordon equation
(8,0 — m?)é(x) = 0 (1.8)

the most general solution of which may be expressed in Fourier modes or momentum
space as

o(z) = Y Ja(k)e™™ + a*(k)e 7] (1.9)

-

k

Here k° is given by the positive energy mass shell condition

K2 =—m?, k'=+y k2 + m?

and we use the notation

B 3k
XE: - / 2k0(27r)3
S = 2k°(2m)38%(k — k') (1.10)

in 3 space dimensions. Then of course

> O =1

E
In the operator formulation of quantum field theory, the variables, a(k) and a*(k) become
annihilation and creation operators respectively, a(k) and af(k) corresponding to “single

particle” field excitations of momentum, &, energy k° and mass, m. Continuing with the
classical case we find

) = i =)
H(6.00.7) = 5r(@) + Vo) + m?¢?() (1.11)

Let us find the free hamiltonian
Hy = / P

1 — — - . - . — 1 — 1
_ §/d3x2{—(k0k0,+k . k/) [a(k)ezkx B a*(k)e—zkx][a(k_l)ezkx B a*(k/)e—zk :v]
Kk

7it(k°+k0')ez'j:‘-(lz+l_c")(m2 . (koko' n

~—
S

—
!

—
Q

— —.\,

k k

+ a (k)a*( )eit(k0+k0’)€—if-(E+E’)(m2 _ (kOk,O’ + E . k/))
k k
k

+
S
* A~
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1 1 - 7N —20ith0 (2 2
- §§ﬁ {alk)a(=F)e ™" (m* — m?)
+ a*([i)a*(: _')62itki m2_)_ m2) ) .
+ (a(k)a*(k) + a*(k)a(k))((K°)? — k* + (K°)* + k?) }
_ % > K (a(B)a* () + a* (R)a(F) (1.12)

Let us compare this with the well known 1-dimensional harmonic oscillator with mass
m = 1 and angular frequency w. The hamiltonian may be written

1
Hpo(p,q) = 5(192 + w?q?)

with p = momentum and ¢ = position. Let us change variables to

a:\/%_w(wq—kip) a :\/T—w(wq_ip)
a+a’) (1.13)

i

I

|

~

N |

—~

S

|

S

*

~—

]

I
ﬁ
&

—~

Then )
H = §w(aa* +a*a)

Now the comparison is evident: The relativistic free scalar field represents a sum of
independent harmonic oscillators, one for each value of the momentum 3-vector, k.
Quantum mechanically, p and ¢ become operators, p,§ with

b, d) = —ih = =i
And a, a* become the operators @, al with
[a,a'] =1
the usual annihilation and creation operators for oscillator phonon excitations.

As is well known, a more careful treatment of the quantum hamiltonian yields the result

1 1
H= 5w(aaﬁ +afa) = w(ala + 5)

The operator &'a is the number operator , the eigenvalue of which is zero on the oscillator ground
state, the “vacuum”. The term %w is a “zero point fluctuation energy”. Similar remarks would

apply to the quantum field case.

1.3 Quantum Mechanics

1.3.1 The Feynman Path Integral in Phase Space

We start slowly by considering a physical system with a single degree of freedom, position,
g. Conjugate to that we have a single momentum variable, p. As an example we shall
soon study the one dimensional harmonic oscillator.
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Our first objective will be to derive a path integral expression for the transition am-
plitude defined as follows:

Suppose the particle is known to be at position ¢ at time ¢, what is the quantum
mechanical amplitude to find the particle at position ¢' at time ¢ > t7 The answer is
given by the transition amplitude

F(¢',t';q,t) = transition amplitude

First we establish the standard expression in terms of the hamiltonian of the system. Let
lg,t) g be the Heisenberg-state-vector describing the initial knowledge. Notice that it is
independent of time as a Heisenberg state vector should be. The ¢-label is a specification:
the particle is localized at the time value, t. For 7 = t the state |¢,t) g is an eigenstate of
the time dependent Heisenberg position operator ¢ (7):

qu(T=t)g.thn = qlg, )

whereas |g,t) g is not an eigenstate of ¢y (t) for 7 # ¢. The time-independent Schrodinger
position operator ¢g is obtained by

(jH (t) — ethque—th
where H is the quantum hamiltonian of the system. The state vector |¢) defined by
|q> = e_th|q7t>H

is independent of the time label and is an eigenstate of ¢g:

gslg) = dse g, )y = e MGu(t)|g, )y = qe g, )y

= qla) (1.14)
Using the definition we now obtain the formulas
F(q,t'5q,t) = u(d' ¥lq, t)u = (| exp{—iH (' = 1)}|q) (1.15)

This is the traditional quantum mechanical expression. We now derive a path integral
expression for this.
Let us subdivide the time interval from ¢ to ¢’ in n + 1 small pieces of length

t—t
€ =
n+1
with
t[) - t
tl = t+e
o= ttie (1.16)
lny1 = t'

we now use the fact that for every value, ¢; of the time label, the set of states

{lgi, ti)mlai € R}
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Figure 1.2: An “arbitrary” discretized path

form a complete set so that the unit operator may be expressed as

/in|Qiati><Qiati|

where for simplicity we dropped the Heisenberg label. Hence we may express the transition
amplitude as

F(q',thq,t) = (¢, tlg,t)
= /dQIdQQ w2 dgn(d, ' qn, tn) (Gns tnl g1, tn—1) - -
g, t){a, tlg, t) (1.17)
For a fixed set of the integration variables
qi = q(ti)

we may think of the “function” ¢(t;) as representing a certain path taken by the particle.
Here it is inherently defined with a “regularization”: we have introduced a discrete set of
times, t;, but we may imagine that in the limit n — oo these paths become “sufficiently
close to” the actual possible physical paths for a particle not subject to classical equations
of motion, cf. fig.1.2. In this limit we shall further allow ourselves the notation

Dq(t) = ﬁdq(ti)

In this sense the above expression is already a path integral: We have what we shall call
a functional integral over “all” paths.
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We next want to relate the integrand to Feynman’s expression e¢**. Rather than
presenting the very shortest treatment let us be slightly more general than Feynman and
first introduce yet another complete set of states, namely the momentum states, writing

ala(ts),tila(tia), tiahn = (a(t)le M a(ti 1)
= [ g lpten el ot 1) (119

Notice the normalizations used:
_ dp _ dp —1ipq
|@—-/%mw@—/%e|m
p) /@mmp:/@ﬂ%>

— d/ q(p—p")
/q o ")

= /%%%ﬁ@—pﬂﬂ>
= |p) (1.19)

showing the consistency.
Let
H=H(p,q)

be the classical hamiltonian expressed as a function of (think of a polynomium in) p and
¢. The quantum hamiltonian H (p,q) is constructed by replacing the classical variables
by their quantum equivalents. However, because p and ¢ do not commute, there is an
ambiguity if the dependencies on (p, ¢) is not separable. In most of our applications they
will in fact be separable, the harmonic oscillator being our favorite example:

1
<HﬁoO%q)==§O9-%wqa

In general we shall define the meaning of the quantum hamiltonian such that it is ordered
in such a way that all p’s stand to the left of all ¢’s. In that case we may then (to first
order in €) express the matrix elements as

q(tir)) = e P (8 g (1)
= exp{—i[p(t:)q(ti 1) + eH (p(t:), q(ti-1))]} (1.20)

We may now express the transition amplitude as the following path integral in phase space

(p(t;)| e~ @)

n+1

F(qlatl;Q7t) = t])

j= 1

st Dbt e )
(a0l e a(w)
~ font ) ol ) ) 4580~ o)
— H ) a(t) + -+ Hp(t).at)])
— [ Do(t)Da(t) exli / ldt[pa)q'(t)—H(p(t>,q<t>>1} (121
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Notice that we have defined

_ 17 9p()
Dp(t) = H o
This expression is referred to as the path integral in phase space as opposed to the
Feynman path integral in configuration space. The expression in the exponent looks just
like the time integral over the lagrangian, i.e. as the action, however, the difference is
that the lagrangian depends on (¢(t), (t)), and since ¢(t) is the derivative of ¢(t) it is a
functional of a path in configuration space. In the expression now derived we have an
integral over paths in phase space, the dimension of which is twice as large: p(t) above is
not linked to ¢(¢) via ¢(¢) and the classical equations of motion.

However, we shall consider the very important special case where the dependence on
p is quadratic. In this case we shall be able to carry out the functional integral over p(t)
rather trivially using gaussian integration. Whenever that is the case we do indeed end
up with Feynman’s path integral. Even in that case, however, it is sometimes best to
start with the path integral in phase space whenever subtleties require special care.

Let us first pause to give several crucial formulas for gaussian integration. These
provide the key to understanding the manipulations of the path integral formulation of
perturbative quantum field theory.

Gaussian integration

1.
I:/ e dy = /7 (1.22)
Proof:
I’ = dre ™ x dye ¥’ :// dwdye™ @ V")
27 00 N 00 9
= / dd)/ rdre™ =7 [ drfe” =7 (1.23)
0 0 0
ged
2.
o0 1,2 2T
/ dre 2% =4/ — for Rea >0 (1.24)
—00 a
Proof:

Change variable faz? — y?; discuss the case Ima # 0.

3. Let {A;;} be a real symmetric n x n matrix with positive eigenvalues. Then
/ e 34T = (27)"/2(det A) (1.25)

Proof:

(i) Trivial for A diagonal. (ii) Unaffected by orthogonal transformation: d"z and
detA invariant under these. Fill in details.
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4. Let z; = x; + 1y; be n complex variables and let 7 denote the complex conjugate.
Let A be hermitian with positive eigenvalues. Then

/ d"zd"ze 3542 = (27)"(det A) ! (1.26)
Proof:
Exercise! Discuss how d"zd"Z is normalized.Compare with 3.

5. Let = and b be real n-vectors and let A be positive (i.e. positive eigenvalues), real
symmetric n X n.

S(z) = 2" Ar + bz (1.27)

DN | =

(Superscript 7' denotes transposition). Let z¢ be the critical (or “classical”) value
of the vector x for which (the “classical equations of motion”)

0
8£UZ'

S(z) =0
holds, i.e.
To = —A_lb
so that ) )
S(ze) = §(A*1b)TA(A*1b) —b'AT = —§bTA*1b

Notice that this is minus the contribution of the first (“free”) term in eq.(1.27).

Then

= (2m)"*(detA)~ze~5@c)

— (2m)2(detA)FetHTA s,
Proof:

1 1 1
ExTA:U +b'r = g[xTAx + 207 2] = 5[(1‘ —z20)TA(z — 2¢) — bT A0

Now change variables from z to z — x¢ = x + A7'b, and show that the Jacobian of
the transformation is 1.

Eq.(1.28) will be our fundamental rule of gaussian integration. The idea in the proof is
referred to as “completion of the square”. It is easily generalized to the complex case
analogous to 4.

1.3.2 The Feynman Path Integral in Configuration Space

Let us now go back to the path integral expression in phase space, eq.(1.21), and consider
the case where the variables p and ¢ are separable and in particular where the dependence
on p is quadratic:

H(p,q) = %pZ +V(q)
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Then the “path integral” over p(t) in eq.(1.21) becomes

[ . 1
[ Dpexpli [ drlp(r)(r) - 5p*(0)]} (1.20)
To apply the rules of gaussian integration just developed we see that we have to subdivide
again the integration interval and think of p(7;) as playing the role of x;. Also

n &
Z xz-Az-ja:j —1 dTp ~ ZZATP Tz ( z)
ij=1 ¢ i=1
Then
Aij — ZAT(SZ]

and similarly
—6z’j y bl = —ZATq(Tl)

Therefore o
Lrasty o L[ ari(r)
2 2 Jt
The normalization of the path integral involves the determinant of A which is given by
the strange expression
(AT)"

and that becomes singular in the limit n — oco. This is a common feature of path integral
discussions. Actually as we shall later see, such normalization constants are really of no
interest as long as they do not depend on variables of physical significance. In our case
the constant only depends on the fictitious cut-off A7. So we lump these uninteresting
factors into “the normalization constant” A/. We have finally derived the Feynman path
integral

F(f.t50.0) = N [ Dgespls /t'dﬂlq'2<7>—v<q>1}
= W [ Dyespli [ drlLa(r),d(r)}
= quxp{iS[q]} (1.30)

1.3.3 Correlation functions

Amplitudes of physical interest are often more directly related to the so-called correla-
tion functions (a name borrowed from statistical mechanics, see later sections) or Greens
functions (of which we shall meet several kinds, see later sections).

Let us start by considering the one point function

(7, t'1q(D)lg, t)

where we now omit the Heisenberg label, H, and where ¢ € [t, ¢']. This is the unnormalized
expectation value of the position at time #, given the transition represented by the initial
and final state. The corresponding normalized expectation value is obtained by dividing
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by the transition amplitude itself. When this is done the unwanted strange normalization
constant N disappears.

A path integral expression for the one point function is easily obtained by subdividing
the interval again so that ¢ coincides with one of the division points, say #;. The calculation
is entirely identical to what we have just done, with the exception that the small transition
from t;_; to t; contains the position operator. But that operator is now acting on an
eigenstate, and we simply get a factor g, in front of everything in the integrand. When
this is replaced by the name ¢(#;) and we pass to continuum notation we obtain

(¢, t'q(®)lq.t) /qu (1.31)
It is equally simple to work out the result for the two point function
(¢, t'q(t2)q(t1)]a, 1)

provided

El < EQ
Subdividing such that these time values coincide with t,, tx, respectively, we see that we
get again the same integrand but with factors

Qs ke, ™ Q(tkz)q(tkl)

Therefore the path integral automatical provides us with the time ordered correlator or
Greens function:

[ Dacq(i1)a(72)
= (¢, 11T{q(t2)q(t1) }g 1) (1.32)
where we have introduced Dyson’s time-ordering symbol, T, ordering operators such that

the operator with the earliest times stand farthest to the right.
Clearly in the general case we find for the N-point function

Gn(ty,ta, o tn) = (¢, 1T{4(t)§(22)..-4(EN) Ha, t)
= [ Dgeg(8)(7)...q(T) (1.33)
Notice that the Greens function depends on our choice of boundary conditions, specified
by (¢',t'| and |q,t), however, we refrain from adding more labels to it by now. Notice

also that inside the time-ordering sign T', the §(¢;) operators commute just as if they were
“classical” variables like the ones inside the path integral sign.

1.3.4 The Generating Functional, or, the Partition Function

When one deals with a sequence of numbers {a;|i € N} it is very often mathematically
convenient to study this sequence instead by the generating function
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from which the sequence is recovered by

dTL
Ap = %F(Z”Z:O

Likewise for Greens functions, N-point functions, we shall find it convenient to introduce
a generating functional. In field theory we shall introduce several, and we shall see how
the relation to statistical mechanics suggests the name “partition function” for the one
we consider now. Given an “arbitrary” external “current” or “driving force”, J(t), which
however, we shall always assume vanishes identically in the sufficiently distant past and
future, we define the partition function as a functional of that current as

Z[J] = Ni.é /dtldtQ...dtN%GN(tl,tg, ...,tN) X J(tl)J(tg) et J(tN) (134)

So that the Greens functions themselves are recovered by functional derivatives:

J 4] 4]

= I eIt iy 2= (1.35)

GN(tl, t2, seey tN)

This is easily verified using
8J(t})
0.J(t;)
After the functional derivatives are carried out we are instructed to put the current to
zero. The factors ¢ and N! are purely for convenience.
It is now easy to see that there is an elegant path integral expression for this generating
functional. Indeed, consider the modified action, where we add to the lagrangian a driving
force term given by J:

L(q(t),4(t)) — Lq(t),4(t); J (1))

and correspondingly

=4(t — 1))

L(q(t), 4(t)) + J(1)q(?) (1.36)

Sla: 71 = [ dtL(g(t),q(0); (1)

Notice that in the simple case where

Lg(t),(0); T()) = 50° — V{a(t)) + T(a (1) (137

the equation of motion gets modified into
G=—V'q)+J

showing that the “current”, J(t) is indeed an external driving force in that case.

Theorem
21 = /quz-s[qm _ /quiS[qufdtJ(t)q(t) (1.38)

Proof:

0 iS[g;J] iS[g; 7] o .
5700 [P = [ De iéJ(Z)Z/ dtI()a(t)

— / DgetSlaly () (1.39)
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Similarly

5N
i0J(t1) - --i0J ()

[ Pac ) = [ DgeS g qty)  (1.40)

So putting J = 0 in the end

6N . , _ _
_ _ DaeSleIl - — /D Sldg(E) .- a(t
7;5J(t1)...7;5J(tN)/ 4e” =0 ae™a(t) -~ altw)
- GN(fl,...,fN) (].4].)
Hence
Z[J] = / DgeiSle] (1.42)
ged

The Greens functions we have considered here and indeed our entire path integral
derivation, made use of one particular kind of boundary conditions, or, correspondingly,
one particular kind of specification of initial and final states. However, there is nothing
sacred in the choice we have presented. On the contrary, in practical applications it is
usually not a good idea to specify position states, since these can only make sense at one
instant of time. The same is true of the analogous states in the field theory case where
we might try to impose particular values for the field variables.

A much more practical specification both for comparison with actual measurements
and for further development of the theory, would be ones where we used instead eigenstates
of the energy operator without driving force, in the distant past and future. This choice
of boundary condition we want to analyze in quite some detail by studying in the next
subsection the harmonic oscillator.

1.4 The Harmonic Oscillator

1.4.1 The Naive Treatment

The example of the harmonic oscillator with an external driving force contains essentially
all the complications we need for field theory perturbation theory. The action is given by

Swo = Slg: 7] = [ dt{5(d ~ ¢?) + T()a(1)} (1.4

In this case we shall be able to derive a closed expression for the path integral. Our
ability to do that depends on the problem being gaussian: the degree of freedom, ¢(t)
appears quadratically and linearly only, in the action, so that gaussian integration can be
performed. We would like to emphasize two points:

1. How simple it is to derive the result using gaussian integration.

2. Nevertheless there are some very important subtleties associated with the choice of
boundary condition.
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In order to first emphasize the first point, let us present a sloppy treatment. We make
the usually unjustified assumption that we can perform a partial integration in the action
without boundary terms, so that the action can be written as

2

Slas 7] = [ dt{—a(0) 5 + «la(t) + T(a(n) (1.44)

This shows that the path integral is gaussian:

1
/Dq exp{—§qA_1q +iJq} (1.45)

where we have introduced “functional notation”. The operator, A~! is a linear operator
on functions ¢(t) defined by

d2

Alq(t) =i [ﬁ + w?q(t) (1.46)

and of course

Jq = / dt.J (H)q(t)

etc. The name A" derives of course from the fact, that the inverse (suitably defined!)
is the interesting object, the propagator. Using blindly the rule of gaussian integration
above, we then find

- / Dge 3987 040 — N1 3 TAT (1.47)
where the normalization among other things involve
(detA)?

As we shall see we do not need to know too much about this determinant, but we shall
need to understand in particular the meaning of A, the inverse of A~!. Naively it looks
like we might write

dpe ip(t—t')

2 p? — w?

At t) = (1.48)

Then, namely, we can easily prove that (formally) A=A = 1. More precisely we get

2] /dpe ip(t—t")

ATTA(
( ) ) 27r p

dt2
dp [W_Fw ] ip(t— t)
2 p? — w?
dp [_p2 + w2]e—ip(t—t’)
2 p? — w?

P —ip(t—v)
27
= §(t—1t") (1.49)

This shows that we are on the right track. And

2] = Ne 375 = A7 exp{—% [t [at o))y (1.50)
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So far so good. Now let us discuss the problems, and where we have been too sloppy.

If we try to evaluate the propagator we meet the problem that the denominator in the
integrand is singular at p?> = w?. Something is wrong, but what is going on? Let us think
a little harder, and try to be more mathematical. We have defined the operator A~! which
is certainly a linear operator acting on some vector space of functions. Hence we think in
analogy with a finite dimensional matrix. But is that operator (matrix) really invertible?
The answer depends on the set of functions, or better: the vector space of functions, on
which we mean to define it. If we take the space of all functions ¢(¢) (just with some
smoothness properties), we shall certainly go wrong because the operator in question has
“zero-modes”. This is the analogous situation to a matrix which has eigenvectors with
zero eigenvalues. Such a matrix of course cannot be inverted: it is singular. Indeed there
does exists eigenfunctions gy(t) with zero eigenvalues:

d2

[dt2

Furthermore, far from being pathological, these zero modes are exactly the classical so-

lutions for the free oscillator! Very physical ones! So, if we try to consider the operator,
A~! on a function space including such functions, it cannot possibly be inverted.

What will happen, however, is that when we impose boundary conditions corresponding
to the initial and final state specifications, we shall restrict the set of functions ¢(t) over
which we path integrate (namely by forcing them to conform to the boundary conditions)
to be such, that exactly there are no zero modes to be integrated over.

Let us now discuss this in some detail, starting with the situation encountered in
the last section where we calculated (gr,t¢|gy, ). We obtained this matrix element by
performing the integration over all continuous path ¢(t), t € [t,¢;] with the boundary
conditions ¢(t,) = ¢, and ¢(t;) = ¢s. It is easy to check that the (1.51) has solution
qa(t) # 0 if g, or gy are different from zero (except for special values of w(ty —;)). Let
us write

+ w?]qo(t) = 0 (1.51)

q(t) = qu(t) +q(1), (1.52)
where () satisfies the “vanishing” boundary condition:
q(tsy) = q(ts) = 0. (1.53)

If gu(t) # 0 the classical equation (1.51) has no solution which satisfy the boundary
condition (1.53). Now comes a very common idea in the functional approach to quantum
field theory: We may change variable in the path integral from ¢ to ¢ since the difference
is just a fixed path:

/Dq ¢iSlaer+a;7] — /D(j eSlac1+:7] (1.54)
This step is entirely analogous to the variable change

[[ds" =[] d(zf + 3 = ] d&’

in the case of finitely many variables. The analogy is

=t

= q(t)

rh = qu(t)

Foo g (1.55)
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If we use that ¢.l(t) satisfies (1.51) as well as the boundary conditions (1.53) it follows
that

Slger + ¢; J)] = Slqa; J] + S[g; J]. (1.56)

This result is only correct for an action S(g;.J) which is quadratic in ¢. It implies that
we can write the path integral (1.54) as

Z(J) = ¢iSlaersT] / D i8], (1.57)

Using this more detailed formulation of the boundary problem, the functional integral is
well defined. We are on a finite interval and the boundary condition for ¢(t) is a standard
Sturm-Liouville boundary condition where (for generic values of w and ty —t,) (1.51) has
no solutions. Thus the Green function Ay, where the suffix zero refers to the boundary
condition for §, exists (exercise: find it using the notes on Green functions). We can
finally write

Z(J) = N' eSlaerll g=3780] — £\ =3 780T 41T, (1.58)

where the normalization factor among other things involve the determinant det Ay, and
where the last equality is obtained by using eq. (1.51) and absorbing a J-independent
boundary term coming from a partial integration of the kinetic term in S|gy; J] in the
normalization constant.

Let us now consider the situation where we project on the ground state of the harmonic
oscillator, i.e. we calculate

Z(J) = /de(tf)/de(tb) (Wolgr,tr)lar, tr){ar, trlan, to)(ab, to| Yo l(an, th)), (1.59)

where all vectors as usually are in the Heisenberg representation. Furthermore we will
assume that ¢, — —oo and t; — oco. The amplitude, which we (with a slight abuse of
notation) still denote Z(.J), is in fact a very natural quantity. It is the amplitude that
a harmonic oscillator, original in the ground state, remains there after an external force
J(t) is applied to the system. Also, as will be discussed later, it is precisely this amplitude
which is natural to consider when we generalize from quantum mechanics to relativistic
field theory.
We will now show that

1. The integration over g, and ¢y can be included in the path integral in a natural way.

2. By this inclusion we arrive at a differential operator (1.46) which can be inverted and
where the corresponding Green function (the Feynman propagator) is characterized
by the fact that only positive frequency oscillations e~ are propagated forward in
time and only negative frequency oscillations ™! are propagated backwards in time
(outside the time interval where J(t) is non-zero).

A priori it is surprising that folding of the wave functions Wy(gs) and ¥,(g,) into the path
integral for (g, t|q, ty) leads to a well defined boundary problem for differential operator
(1.46) since we are integrating over all ¢; and all g,. As will be clear, it is very important
that we consider the projection on the ground state. Only in this case a simple picture
emerges.
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Let us use that the ground wave functional of the harmonic oscillator is

2

Wo(q) ox e 39, (1.60)

Hence (1.59) can be written as (with ¢; = oo, t, = —00)

e ) B [y 0 1

In this formula the functional integral does not include the endpoints g(+o0) (clearly we
are a little sloppy and formal at this point). We use the following formula (which is valid
for functions ¢?(¢) which behave reasonable nice at ¢ = +00; investigate how nice!):

q*(00) + ¢*(—o0 —hms/ dt e =" g2 (). (1.62)
We can now write

_ / Dy(t) o3 /o (@~ (Pize ) (1), (1.63)

where the integration over the endpoints ¢(£o00) are included in the functional integral
and where the limit ¢ — 0 is understood!. Summarizing, effectively an infinitesimal
imaginary term has been added to w?:

w? — w? — g (1.64)

With this slight modification we can now return to our heuristic derivation (1.45)-(1.49) of
eq. (1.48) for the propagator. With the change (1.64) (the so-called Feynman prescription)
we obtain

dp efip(tlft)

Ap(t,t P R
() = 2w p? — w? + i€

(1.65)
The Feynman prescription has displaced the poles encountered at p = +w infinitesimally
into the complex plane:

p=*+(w—1ig) (where we assume w > 0 and &’ > 0) (1.66)

and thus made the integral in (1.65) well defined. Further, for # — oo (in fact, for
t' —t > 0), the (Fourier) exponential function falls off exponentially in the lower half
plane as exp{—|Imp|(#' — t)}, so that we may close the integration contour in the lower
half plane. Thus using the Cauchy theorem of contour integration, we pick up the pole
at p = w — i€’ with residue -

v —iw(t' —t

%56 (' —1)
Hence we find the useful formula

1w
Ap(tt) = %6%“ — (1.67)

'Let us at this point remark that it is important that we project on the ground-state and not a higher
energy eigenstate. Such higher energy states will always have zero-points zg where ¥, (xg) = 0 and
cannot be written as an exponential, which was important for the above arguments.
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Here we used that the contour integral is obtained as 274 times the residue, times a factor
—1 because the contour runs clockwise when closed in the lower half plane. A similar
calculation applies when ¢ — ¢’ > 0.

Let us now study the solution to the differential equation

— + W’ f(t) = J(t) (1.68)
using the Feynman Green function Ap(t',t) given by eq. (1.67). One has
- / dt' Ap(t, ) J(F). (1.69)

Assume that the support of J(t) is confined to the interval [—T,T]. Then we have

fity = Ae ™  for t>T, (1.70)
ft) = A*e“  for t<T, (1.71)
where
A= ! dt e J(t 1.72
= [t S Jt). (1.72)

Hence we can say that from a mathematical point of view the Feynman prescription
(1.64) corresponds to solving the differential equation (1.68) with the boundary conditions
that only positive frequencies propagate forward in time and only negative frequencies
backwards in time. This boundary condition allows no solution to the homogeneous
equation (1.51), and there is thus no zero eigenvalue. Consequently the Green function
exists (and is given by (1.67).

To summarize: we have obtain the following fundamental result for the ground-state
to ground-state amplitude (1.59) for the harmonic oscillator

Z(J) = N"e 27887 | (1.73)

where N is a normalization factor. For a given external source J(t) acting on the
harmonic oscillator, the probability that the oscillation will remain in the ground state is
thus given by

1Z(J)[?
12(0)[?

= exp(~Im /_OO dt/oo dt' () Ap(t, 1) (t))
= exp Im/OO on —w2|+26) = exp(—%), (1.74)

where J(p) denotes the Fourier transform of J(t). Note that this calculation is actually
simpler than the corresponding calculation using conventional quantum mechanics.

Let us finally remark on the determinant of Arp. We could think of that as something
like the product of all the eigenvalues \; of the differential operator, i.e. the \;’s satisfying

—— = wﬂ fit) = Aifi(t) (1.75)
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with the given boundary conditions?. The trouble is that this product would diverge
wildly. The fact however, is that even if we regularize the determinate (say by including
only eigenvalues less than some cut-off (the Planck energy (?!)) for some physically
relevant particle physics problem), it would still be quite uninteresting: we have seen that
what we need, to obtain the Greens functions, are derivatives after the external current,
but the determinant cannot depend on that external current, it only depends on w and the
cut-off. Hence it is merely one more irrelevant contribution to the overall normalization
constant. For this reason we shall ignore it in the following. (Please note, however, that
there are many more complicated physical situations in which the determinant precisely
does depend on physically relevant parameters. In those cases one must understand the
determinant).

1.4.2 Harmonic Phase Space

To be even more careful, and to consider in detail the rather particular kind of boundary
condition, we shall be mostly interested in, we actually go back to the path integral in
phase space, and we take this opportunity to introduce some powerful technique based on
the idea of harmonic coordinates in phase space: “harmonic phase space”. The harmonic
oscillator furnishes a very simple example of that.

Consider the free classical oscillator

1 1 1 1

I = 262 20202 = o — (22 4+ 2202
50 — W =pi— [0+ 5]
= pq— H(p,q) (1.76)
with oL oL
== pPp=——=—w? 1.77
P=ge =6 P=go =W (1.77)
The general solution to the equation of motion
j=-wq
is on the form
1
t) = t) +a*(t
o) = —=loft) +a'(0)
w *
p(t) = i\[2latt) + (1)
1
a(t) = ——lwq+ip] = a(0)e™ ™"
(t) \/ﬂ[ ¢+ ip] = a(0)
1
a*(t) = —=lwq —ip] = a*(0)e""
2w
1
H(a*ya) = §[q2+w2q2]:wa*a (1.78)

2Note that this is strictly speaking only true if the operator is defined on a finite interval. In case
ty,ty = Foo there exists only generalized eigenfunctions with do not satisfy the boundary conditions.
In addition the spectrum corresponding to these generalized eigenfunctions is no longer discrete, but is
labeled by a continuous index, e.g.

Alp) = £vVp? —w?,  |p| > w.
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Effectively we have passed from (p,q) coordinates in phase space to the harmonic ones
(a*,a), and we see that for the free oscillator, the classical trajectory in harmonic phase
space is merely a phase-circle for each variable, a or a*.

In quantum mechanics the harmonic phase space variables are replaced by creation
and annihilation operators (af, a) satisfying the commutation relation

[a,a'] =1

and the Hilbert space of the oscillator is spanned by the basis vectors in Fock space, the
vacuum, the singly excited, doubly excited,... etc. states:

0), a'l0), (ah)?[0), ..

However, we shall now introduce a different basis, more convenient for the present (as well
as for many other) purpose, the coherent states that are eigenstates of the annihilation
operator:

Let a be a real or complex number, then define the state

adl
|a) e*'|0)

o0 n

S L(ahy|o) (1.79)

|
n=0 n.

One easily checks that ) )
alay = [a, ¢"|0) = ae"®'|0) = ala)

(Notice the useful rule: [a, F(a')] = F'(a'); exercise: prove that!).
Similarly we introduce bra-states: given a* complex, define
(a*] = (0™
for which
(a*|a’ = (a*|a*

showing that these are eigen (bra-) states of the creation operator. The normalization

follows from
(a*|a)y = (0] |a) = e (0]a) = €™ (0]0) = ** (1.80)

They also satisfy the completeness relation

[ = dada™ e
2m

a){a"| (1.81)

Proof:

dada* .
* I — —a*a /1* *
111 O e o a1

dada*
= / = exp{—a‘a +b'a +a*b}

27

27

= 0 = (b*|b) (1.82)

-/ dada” {0 — b'][a — B}e?
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where we used gaussian integration in the last step. This completes the proof of the
completeness relation. Notice that we have not used that 0* should be the complex
conjugate of b.

Let us now derive a path integral expression for the transition amplitude in a situation
where the initial state at time ¢ is a coherent state |a,t), and the final state at time ¢’ is
a coherent bra state (a*,t'|. Further, let us immediately generalize the model to include
a driving force:

H(a*,a) = H(a",a;t) = wa*a — y(t)a* — 7(t)a (1.83)
Notice that if we use instead the name
J(t J(t
=29 50 =0
2w 2w

then for J = J, J is just again the external time-dependent driving force. (Proof: use
eqs.(1.78)).

The matrix element of the quantum hamiltonian
H(at,a;t) = wata — y(t)a" —~(t)a (1.84)

(notice the ordering adopted, and notice that we have ignored the zero point energy which
would merely contribute to the normalization constant) is given in the coherent state basis
as

(a*|H(a, a:t)[b) = H(a”,b;1)(a’|b) = H(a", b t)e"" (1.85)
We have now in the usual way for the transition amplitude between coherent states
F(a*,t";a,t) = (a*,t|a, t)
da( .
_ /H da(ti)da™(ti) _a=(t)a(t,)
27m
(a"(t")|e” “Hla(An)><a*(tn)|6_“Hla(tn71)><- -
- (" (t )Ie’“Hla( )
B H da(t (t;)
N 27r2

exp{a (ta(ty) — a*(tn)a(ty) + a* (tn)a(tn_1) — a* (ta_1)a(tn_1) + ...

- /H o 27m tZ)
exp{ tt, drla*(r)a(r) — iH(a*(7),a(7); 7)) + a”* (t)a(t)} (1.86)

Here we have introduced the names a*(¢') = a* and a(t) = a. Also, in the last step we
rearranged the exponent as

[a*(t') — a(tn)]a(ty) + [a*(tn) — a* (tn=1)]a(tn-1) + ...

+ [a*(t2) — a*(t1)]a(tr) + a*(t1)a(t) — i ’ drH(a*(7),a(7);7) (1.87)

t
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We see that we have expressed the transition amplitude as a path integral over paths in
harmonic phase space:

F(a",t;0,1) = [ DaDa" expfi tt' dT[%a*(T)a(T) _H]+ a*(Ha(t)} (1.88)

where the first term in the exponential corresponds to the action part. We may notice
that by a partial integration of the @*a term in the integrand we may regain the symmetry
with respect to the end points. The form in eq.(1.88) involves paths in phase space with
the following boundary specification:

e At time t, a(t) = a, a*(t) unspecified.
e At time t', a(t') unspecified, a* (') = a*.

Notice that this kind of specification, where we only fix half of the phase space coordi-
nates at each end point of the trajectory, makes sense both quantum mechanically and
classically. Classically we have the additional possibility of specifying all phase space
coordinates at the initial point say, and none at the final point, which is then a result of
the dynamical evolution. That is impossible quantum mechanically, since the quantum
variables do not commute.

The equations of motion corresponding to the above form are found by writing down
the stationarity condition of the integral:

OH
oa* I

v .. .OH et
0—/t dr{dala —z%]—&L [a+1

or in our case
a+iwa—iy=0, ¢ —iwa"+7 =0 (1.89)

The classical solutions with the right boundary conditions are immediately written down:
a(t) = ae®t7) 4 Z/ ey (s)ds
t
. ) ¢
a’(r) = a%e™t) 4 z/ e“(T=9)5(s)ds (1.90)

The result of doing the gaussian path integral in phase space, eq.(1.88) is given by the
critical value of the exponent, which we thus evaluate:
For the action part we write

t '

t/
drla*a —iH| = | dr[a*a — i(wa*a —ya* —7a|| = | drliv(T)a™ ()]
t t t
where we used the equation of motion
a* —iwa* 4+ iy =0

The critical value of the exponent in eq.(1.88) is thus

tl

a*(t)a +1 t dry(1)a*(7)
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o v
= a*ae®") 4+ ia dse“"(t’s)i(s)

v dsv()[*wt )

—q ’7
— a*ae tw(t' —t)

¢ , o
+ z/ ds[ae“ =97 (s) + a* ey (s)]
t

Lot —iw|s'—s
— §/t t dsds'y(s)7(s")e s =] (1.91)

We see here the structure of eq.(1.58) coming in: there is a current-independent term
corresponding to the classical action for zero external current; there is a first order contri-
bution in currents and finally the most interesting second order contribution from which
we may read off the propagator corresponding to the choice of boundary conditions we
have taken.

Notice that in the very important special case where the initial and final states both
correspond to the vacuum state of the system, i.e. to

a=0=a"

we only have this second order term. Also, we shall be particularly interested in the limits
t— —o0, t' = 400

This is the case that we shall mostly consider in this course: The vacuum transition
amplitude between the infinite past and the infinite future, in the presence of an arbitrary
external current. Precisely since this current is arbitrary, that is in fact enough to learn
everything there is to learn about the system.

For this amplitude we may therefore write (for .J real)

Z[J] = (0,400|0, —00)s(0]0)0
1
where we read off .
A N = —iw|s—s 1.

and where we have written the normalization constant as the vacuum to vacuum transition
amplitude for zero external current/driving force.

This completes our derivation of the expressions eqs.(1.65,1.67) for the Feynman prop-
agator based on a careful analysis of boundary conditions. We see that the vacuum
boundary conditions correspond to ¢(t) in eq.(1.78) being given by the creation part for
t — —oo and the annihilation part for ¢ — +o00. This agrees with eqs.(1.70,1.71).

1.5 The Euclidean Formulation

1.5.1 The Feynman-Kac Formula

Consider the transition amplitude, say in configuration space, in the case of a time inde-
pendent hamiltonian. Let {|n)} be an orthonormal set of energy eigenstates with energy
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eigenvalues, {E,,} where all E,, > 0 except the vacuum eigenvalue, which we take to be
zero: Ey = 0. Then we have

(' t0g,t) = <Q’|exp{—iﬁ(t'—t)}lq>—Z(q’ln><nle”g(t'*t)|m><mIQ>
= Y (dIn){nlg)e """ an Ui (g)e B (1.94)

n

where 1,(q) = (¢q|n) is the wave function in g-space for the state at energy level, n. This
expression is an analytic function of the variable, t' —t = At. Let us make the analytic
continuation, often described as the Wick rotation or rotation to euclidean time:

At — —if3 (1.95)

giving

¢, Blg,0) Z Uulq)k (q)e EnP (1.96)

If we furthermore specialize to ¢’ = ¢ and then integrate over ¢ we find the statistical
partition function of the system at temperature

kT

=

(1.97)

(k = Boltzmann’s constant). This result we now cast into a nice path integral expression
known as the Feynman-Kac formula as follows:

We see that we are led to define paths as functions of “euclidean time” ¢t = —ity. Also,
the condition above of putting ¢’ = ¢ means that we consider closed paths:

¢ =q(tp =0) =q(te =0) =¢

and finally, the fact that we integrate in the end over the value

means that we consider the path integral over all closed paths of euclidean time-length,
g =1/kT.

Let us now see what happens to the action integral under the rotation to euclidean
time. Let us consider the simple 1-dimensional potential system

1, dq.,

(G -v

Llg, 4] =
Then
iSlg] = i/ow(—ith){% (ﬁ) - V(g)}
= —Sglq]

Selal = [dtel5(5P + V@) (1.98)
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This “euclidean action” is strictly positive if the hamiltonian of the original system is. We
then finally obtain for the thermodynamical partition function the Feynman-Kac formula

q:tg — q(tg) such that q(tg + ) = q(tp) (1.99)

1.5.2 The Vacuum Functional

A very important special case obtains for zero temperature, in which case (i) the partition
function is given entirely by the vacuum contribution, and (ii) our closed paths have
infinite length: § — oo for kT — 0. This provides us with a new very powerful way to
study our favorite objects: the vacuum functionals. In the presence of an external driving
force the treatment of the subsection above does not quite go through, but precisely for
the vacuum functional it does provided we assume that the external driving force vanishes
identically outside a finite time-interval. The remaining infinite time is enough to project
out the vacuum. (Exercise: fill in details!)
Then for ¢ = —itgy we find

/dtJ = Z/d —ZtE)J(—ZtE)q(—ZtE /thJE tE)qE(tE)
with an obvious notation. We shall dispense with the indices £ on .J and ¢, and write
iS[g; J} — —Splg; J]

Thus for the harmonic oscillator
1, .
Selai J) = [ dta{5(@ +we?) - Ja}

Thus we may express the generating functional - the vacuum functional in the precence
of the driving force - as the following euclidean path integral

Zeld] = [ Daesp(— [ a5 + w2 + [ atTwan)

Now in fact it is completely legitimate to carry out the partial integration without bound-
ary terms: the paths are closed. Thus we get (cf. sect. 1.4.1)

ZglJ] = /quxp{——/dtq _@ + w?q(t) /dtJ

= Nexp{§/ds/ds'J(S)AE(S,SI)J(SI)}

d2
AE(Sasl) = (_W_Fw ) (8781)
dEg efiEE(sfs’)
_ 1.100
2r  E% 4+ w? ( )
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Contrary to the naive treatment given above in sect. 1.4.1, the present one in the euclidean
case is quite correct.

Now let us compare this euclidean formulation with the real time formulation by
“rotating back” to real time, i.e. to imaginary values of (s — §'):

= —is and Fgs = Bt = Eg = —iF (1.101)

More precisely, we have a pole at EFr = +iw and the rotation of the integration contour
is valid as long as we do not cross the pole. Hence we should actually not rotate all the
way, but rather

Ep — e 0™ 9E = —iE + ¢ = —i(E +i€)
for E > 0 (and something analogous for £ < 0). Therefore (with s euclidean time and ¢
real time)

© dE efz'Et
p(s = it) ") 2m —E2 +w? —ic Fir(l)
Also dsds' = —dtdt' so that we have complete agreement with the result we found using

the very detailed discussion of boundary conditions.

Clearly this euclidean formulation is very powerful. It allows us to derive the vacuum
expectation values with great ease. Also it is mathematically better defined: a point
we have not emphasized is that in the real time formulation, the “gaussian” integral is
purely oscillatory so that strictly speaking its meaning is somewhat dubious. Instead
the euclidean path integral is completely well defined. The relation to the real time
formulation is obtained by analytically continuing back in the time variable. In so doing
we may get arbitrarily close to singularities, however, when we start in the euclidean
domain, we know from which side to approach them, as is shown by the appearance of
the 7e here. Therefore it has become customary in many cases to actually work entirely
in the euclidean formulation, knowing that whenever necessary we can always continue
analytically to the physical domain. Indeed a puristic point of view is that this is the
only way in which the real time Greens functions can be defined: as the above analytic
continuation of the euclidean ones. Hence in this present course we shall mostly work in
the euclidean formulation.

A further very nice observation is that in the euclidean formulation, the path integral
exactly takes the form of a the statistical partition function of a fictitious associated
physical system with classical hamiltonian equal to the positive definite euclidean action.
The temperature here can be considered to be given by A (modulo normalization factors
to render the dimensions right) when we re-insert that:

e 5 e_STE

Notice, however, that the associated statistical system in the euclidean formulation, has a
dimension of 1 higher than the quantum system in real time: In our case we started with
a point particle (with a single degree of freedom, ¢), but the hamiltonian in the euclidean
case takes the form of a 1-dimensional integral over some variable (euclidean time), show-
ing that we have statistical mechanics of a one-dimensional object, a string-like system,
the configurations of which are specified by a function, ¢(¢z). Similarly, the quantum
field theories with which we shall be concerned, and which live in 3-dimensional space
(+ 1-dimensional time) will be related to 4-dimensional statistical systems by rotating to
euclidean time.
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The fact that in the euclidean formulation we have a path integral with a positive
weight that may be given a classical statistical probability interpretation, rather than a
quantum mechanical amplitude interpretation, is the starting point for numerical simula-
tions of quantum field theories.
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Chapter 2

Bosonic Field Theory

2.1 The Field Theory Transcription

We have been extremely careful in our discussion of the path integral formulation of a
quantum system with a single degree of freedom. We shall now transcribe the results to
systems with arbitrarily many, indeed infinitely many degrees of freedoms as if that did
not cause any extra problems. The very essential extra problems which in fact do occur
will be dealt with in connection with discussions of renormalization theory.

First, it really is trivial to generalize our previous results to the case of a system with
an arbitrary, but finite number of degrees of freedom. We just have to path integrate over
paths ¢;(t) for each value of i:

H Dg;
(2

Next we consider the field theory case. In order not to have too many indices let us use a
notation pertaining to a single scalar field. The further generalization to fields with indices
taking a finite number of values is quite straight forward and will mostly be treated by
way of the examples we meet.

So our system, has a configuration space, characterized by “coordinates”

¢i(t) = 0z(t) = o(7,1) = ¢(2)

The difficulty associated with renormalization is that we should really first consider dis-
cretized space, where the indices Z live on some lattice, and then carefully consider taking
the continuum limit. Alternatively some other regularization may be used. But we should
start with a regularization. However, we ignore that complication for now.

So we consider the scalar field theory action (cf. sect. 1.2.1)

Sl = [ dwL(6(x), ()
L= —[50,00%+ gm — V(0) (2.1

having in mind mostly dimension d = 4.
Thus the Minkowski Greens function or n-point function is

Gy, xn) = (O|T{d(x1)...0(2,)}|0)
= [ Do 5(a1).. o) (2.2)

41
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where ¢(2) denotes the quantum field operator and ¢(z) the c-number field over which
we path integrate. Similarly we shall express the euclidean Greens function in terms of
the euclidean path integral over field developments, ¢(Z, t), periodic in the euclidean time
coordinate, ¢t with infinite period in order to project the vacuum expectation value. The
euclidean action for the scalar field theory above becomes

Suld] = [ (50,006 + 526" +V (6) 23)

where rotation to euclidean space means a change of sign on the square of the time
derivative. In fact we use the following notation

— 0

ty = T = —x
= —itg
tp = xy=2* =iz
(2.4)
Thus in the Minkowski case we use the metric
a, b =a- — (2.5)

whereas in the euclidean case we do not distinguish between upper and lower indices, but
write them wherever there is best space:

4
ab, = a'b' = Zaubu
pn=1
= aub,d, (2.6)

Then the euclidean Greens function is given by the euclidean path integral

Gty oy ) = /D¢6_SE[¢]¢(x1)...¢)(xn) (2.7)

It is related to the Minkowski Greens function by analytic continuation in the time vari-
ables from real to imaginary euclidean time.

These Greens functions are conveniently collected in the generating functional or par-
tition function, to borrow a word from statistical mechanics:

2101 = [ Doexp{-Splg] +J - 6} (2.8)
with
T ¢= / d.J(2)o(x)
so that evidently

J

Gn(1,y .y py) = 57 (2] e 5J?xn) /D¢exp{—SE[¢] +J - ¢} =0 (2.9)

Then also o .
2= - / [ d“2iGo (21, ooor 20) T (1) T () (2.10)
n=0 """ =1
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2.1.1 On Greens Functions and Scattering Amplitudes

We now embark on the project of setting up perturbation theory for a general quantum
field theory. We shall mostly study Greens functions in this course. However, let us begin
by making a few remarks about how S-matrix elements could be constructed.

The first step in constructing perturbation theory is to make a split in the action

S[o] = So[o] + Sil¢] (2.11)

where ¢ is a collective name for all the fields that might enter the theory. The first
term is denoted the free part, and we imagine that we can solve the theory exactly if
that was the only part. The second part is the perturbation which we would like to
consider small in some sense and in which we perturb: make a systematic expansion, the
convergence of which is usually more than doubtful, but the usefulness has nevertheless
been demonstrated both in practice in many cases and in model mathematical analyses.
Naturally, however, there are important cases where perturbation theory is generally
believed insufficient. This is true of the phenomenon of quark confinement, but now we
want to study perturbation theory.

We have seen how a free scalar field theory is equivalent to an infinite set of harmonic
oscillators, one for each possible 3-momentum. Therefore, when we consider an S-matrix-
element, corresponding to a scattering amplitude describing the transition between initial
and final states specified by free particles in the infinite past and future, it is plausible that
we could generalize our treatment of the harmonic oscillator and develop a path integral
with suitable boundary conditions describing that situation. This indeed is possible.

In practice another method is often more convenient. Namely one starts with the
Greens functions already introduced, and considers the Fourier-transforms or momentum
space version:

Gn(D1, D) = /ddxl...dda:neipller“'Hp”‘”"Gn(xl, ) (2.12)

Actually translation invariance (in space and time)
Gn(x1,.yxy) = Gplzy — X, oy, — X) (2.13)

implies that this momentum space Greens function is proportional to a delta function
expressing momentum conservation. Putting X = z; and changing integration variables
i —r;+X,1=2,3,...,n, we find

Gn(p1, ---,pn) — /ddxleixl(ler...ern) /ddl‘z...dda?nei(m2p2+"'+wnp")Gn(0, To, ..., xn)
= (27r)d<5d(p1 + oo + P0)Grn(P1y ey D) (2.14)

As we shall show later, it will happen that as a function of the momenta, these Greens
functions develop a pole singularity on the mass shell at

Pl =-—m? (2.15)

in addition to lots of other singularities. The S-matrix element pertains to scattering of
particles all of which are on the mass shell. Therefore it is perhaps not surprising that the
multiple residue at all the poles on these external lines (meaning in all the variables p?) is
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rather simply related to the S-matrix element. For this reason our studies of the Greens
functions will contain in principle all there is to know also about scattering amplitudes.
For theoretical studies it is often preferable to stick to the very simple boundary conditions
corresponding to looking at vacuum expectation values. Hence we concentrate on the
Greens functions.

2.1.2 Dyson’s Formula

Back to perturbation theory, let us denote by |0) the vacuum of the free theory. The
(time-ordered in the Minkowski case) expectation value of any function of fields, O[{¢}]
(example: O[{p}] = é(z1)P(x2)) in the free theory is given by

(0l0[{$}]]0)
= [ Dge0l{g}] (2.16)

In particular the full path integral in the interacting theory including the interaction part
St may be written

/ DepeS0l61=5119]
_ /Dd)e—so[aﬂe—sl[d)]
= (0]e 5719l)0) (2.17)

This is essentially Dyson’s formula. It was originally written down for the S-matrix, thus
not for vacuum expectation values, and in Minkowski space, thus with the time-ordering

sign (and —S; = i(Sr)Minkowski)-
For the Greens functions we get

Gla1,nty) = (0|3(z1)...0(x,)e 5119 0)
_ / De 0 (11)...0(x,) e 519! (2.18)

For the (euclidean) generating functional finally

Z[J] — <0|€—SI[¢A>}€fdd$J($)4g($)|0>
_ /D¢6750[¢}+J'¢6*51[¢} (2_19)

This is what we shall mostly mean by Dyson’s formula. We see that the path integral
formulation renders the derivation nearly trivial.

2.2 The Solution of Free Field Theory

Let us solve the euclidean free theory by gaussian integration. We consider
ZolJ] = / Depe Soldl+7

_ /Dd)exp{—%/ddx[auqﬁauqbﬂLquSZ] T )
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= [Doesp{—5 [l 61-0,0, + w6+ T - 6)

= [Déexp{—56 A 647 6)

- /D¢exp{—%[¢— J-AJAp— A J]+ %J-A-J}

e / Dle— 307 (2.20)

where we refrained from using the standard rule of gaussian integration but just derived
it instead, changing integration variable from ¢ to ¢' = ¢ — A - J. As in the case of the
harmonic oscillator, the remaining path integral is uninteresting, since it does not depend
on anything of physical significance, it is just the vacuum normalization. Thus

Zo[J] = 2727 (0]0) (2.21)
with
(010) = Z,[0]
which we shall put to 1. We easily find the propagator in the euclidean case, just as for
the harmonic oscillator. It is the well-defined inverse of the operator

Al = —0,0, + m?

Hence . (o2
d eplz—2
Az, 2") = / L —
(2m)? p? + m?
with a nice, non-singular integrand. This euclidean propagator is continued in the variable
p? (in momentum space) to allow negative values for that in the Minkowski case. In
analogy with the case of the harmonic oscillator, the effect is to substitute

(2.22)

Py +m? = pi +m? — e

where the Minkowski value, p3, can be negative.

2.3 Wick’s Theorem
Let us consider any function of field variables, F[{¢}]. As an example consider

F{¢}] = ¢*(21)d(22)¢" (23)

We can immediately write down an expression for the vacuum expectation value of such
a function in the free theory, using the free generating functional. Indeed for the example

OFI{BYI0) = [ Doe 62(@1)6(22)" (2s)

B <5me1)>2 5J?x2) <5fo3)>4/9¢6‘9”¢’|@0 (2.23)

This example should make it clear that we have the general formula

OIFIEBY10), = PN, (2.24)
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We now use this rule to calculate the partition function of the full interacting theory in
terms of the one of the free theory. We use Dyson’s formula eq.(2.19). Hence

FI{g}] = exp{~ [ d'aV (6(x))}

where V(¢(x)) is the interaction lagrangian. We have Wick’s theorem

210 = exp{- [dav( 5J(x)>}zom

= exp{— / daV (5 O yexp{® SIAJT) (2.25)

( )

Had it not been for several problems, this would have been a most wonderful formula. It
seems we have provided an exact solution of the full interacting quantum field theory. The
solution is given in terms of a very complicated differential operator acting on the rather
simple generating functional of the free theory. In practice the differential operator is un-
manageably complicated unless we can allow ourselves a power expansion of the exponent
hitting Zo[J]. This is perturbation theory. Even here, as we shall see, the expression leads
to divergent integrals. The meaning of those can be made clear however, by rethinking
everything through in the light of a regularization. Again this is renormalization, which
we do not cover for the time being. Suffice it to say that the illnesses can be cured in
renormalizable theories. For now we therefore go on and use Wick’s theorem as a starting
point for the derivation of Feynman rules.

However, let us first pause to consider some simple examples of how the theorem
works.

2.3.1 Examples of the Use of Wick’s Theorem

Let us start by considering the free theory. Then let us work out the one-point function
in the presence of the external current:

b 1
(0) _ iing
Gl (xl)J — 6!](1-1)6

= AJ(z)er” (2.26)

The first subscript on G tells us that it is a 1-point function, the second that it is evaluated
in the presence of the external current, whereas the superscript indicates that we consider
the free theory. Also, our abbreviated notation stands for

AJ(xl)eéjAJ = /dda:A(xl,x)J(x) -exp{%/ddxddyJ(x)A(x,y)J(y)}

Notice that the propagator eq.(2.22) is symmetric in its variables A(z,y) = A(y, z). We
finish the calculation of the one-point function by putting J = 0:

Ggo) (.’L’l) =0

Similarly every n-point function is easily seen to be zero when n is odd.
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T T2

Figure 2.1: Propagator in z-space

X T2 X X2 T T2
o————0 /0
o—————O /

T3 Ty T3 Ty T3 Ty

Figure 2.2: Feynman diagrams for the free 4-point function

We proceed to the 2-point-function:

0 0 o3I AT
J(xl)éJ(xQ)
_ 0 Liag

= {A(z1, ) + AJ(22) A (1) ez’ (2.27)

GéO)(xlaxQ)J =

(=)

Again we finish by putting J = 0, giving
GO (x1, 25) = Ay, ) (2.28)
This is an important result: The propagator is the free two-point function:
Az, w2) = <0|¢2($1)¢2($2)|0> (2.29)

We introduce for this object the “Feynman-diagram” fig. 2.1. The reader is invited to
work out the 4-point function with the result

4
) 1
GOy, 9, w3, 74) = ez’87
= A(z1,29)A(x3,24) + Az, 23)A(22, 24)
+ A($1,$4)A(l‘3,l’2) (230)

with the Feynman diagram fig.2.2.

Clearly this result generalizes into the following Feynman rule for the free n-point
function:

To calculate GO (z, ..., x,), for n even, mark n point on a piece of paper and name
the points x1, ..., z,. Construct all possible Feynman diagrams by connecting the points
pairwise by propagators. For each diagram construct an amplitude which is the product
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Figure 2.3: The “tadpole” diagram

of all these propagators, A(x;, z;) for the propagator linking points x;,z;. Then the free
n-point function is given by the sum of amplitudes for individual Feynman diagrams.
Next let us consider a simple interaction term

V(6) = 50"

Actually this will give us a theory in which the hamiltonian will be unbounded from below,
because the term ¢ can become arbitrarily large, negative. However, the perturbation
theory is well defined order by order in the coupling constant, and this example is just
meant as a typical illustration. In QCD for instance there will be both triple-gluon
interactions (analogous to the present case) and 4-gluon interactions, that will repair the
hamiltonian.

To zero’th order in the coupling constant, g, the Greens functions are just the free
ones before. So let us look at the first order in g. Hence we replace

*fddf”éq‘!(m(z) /dd g 3
‘ 3l 6J X

So the order ¢g' term in the generating functional is
d )
[ g 3 1A
/ ' 3' 6J(x e
— d A JAJ
% [ el ATy
d )
_ d 2y LIAT
= -5 ] e AE ) + (AT@))er]

_ _% / A2 {3A(z, 2) AT (2) + (AT (z))3LesT D (2.31)

We see that to this order, in fact we can only produce n-point functions with n odd (due
to the odd nature of the interaction). Hence we may start by looking at the 1-point
function, normally something one does not consider. Still we get a formal expression by
taking one functional derivative with respect to J(z;) and then putting J = 0 as usual:

GO (@) = —%g [N (2.32)

This expression may be represented by the Feynman diagram fig.2.3. Notice that the ver-
tex with no name attached is integrated over. Looking at the formula for the propagator,
we easily see that the expression A(x,z) diverges in space time dimensions greater than
1 (!) In most regularization schemes one can in fact show that such contributions can
often be ignored. However, that is not always the case. For example the phenomenon
of spontaneous symmetry breaking which is important in the Weinberg-Glashow-Salam
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X, X,
X X, X
X X
x2 'x3 -xz 3 2 -xg

Figure 2.4: Feynman diagrams for the lowest order 3-point function in ¢* theory

model, can be viewed in these terms. Our present concern, however, is only to study the
general structure of the theory, so we shall leave these ill defined expressions standing.

Next we consider the 3-point function Ggl)(xl,xg,xg) to first order in g. To this
purpose we only need the third order expression in the currents, so we may use the
following approximation for the generating functional:

_% / 'z {3A(z, x)AJ(a:)%JAJ +(AJ(2))*}

It is now straight forward to act successively with 5 ](‘;1), 5 J(‘; 1 J( and after putting

J = 0 obtain the result

—g/ddx{A(x,xl)A(x,xg)A(x,xg)

+ %A(l',l‘)[A(l',l‘l)A(l'Q,l'g)
+ Az, x9) Az, 23)
+ A(z,23)A(z9,21)]} (2.33)

with the Feynman diagrams given in fig. 2.4. As a final example, consider the 0-point
function to order g?. To that order the generating functional is given by

d 0 9, 0 3 NN
2l/d 31 5,] /dy?,'(csj( e

Now to get a 0-point function we should expand this expression to Oth order in the current.
We have a total of 6 functional derivatives hitting Z,. they will eat up 6 current factors.
It follows that we must consider the term in Z; which is of order 6 in the current. That
is the 3d order term in the expansion of the exponential:

%(%)3/ddzlddzgddzgddziddz;ddzg

J(21)A(z1,21)J(2)

J(22)A(22, 25) T (23)

J(23)A(23, 23) ] (23) } (2.34)

Zy —
{
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Figure 2.5: A second order vacuum bubble in ¢3 theory

N
N~

Figure 2.6: Another vacuum bubble to second order in ¢? theory

When we let the 6 functional derivatives eat away at the J factors (meaning: when we
carry out the differentiations), we see that we shall be able to produce two different kinds
of terms:

1. It may happen that two functional derivatives with J having the same argument
(say z), eat up the two J factors surrounding the same propagator (say A(zi, 2}))
resulting in a term with a factor A(z,x) after integration over zy, 2. By necessity,
the remaining functional derivatives will finish by giving a term containing

2
g
L [ dtad'y A, ) A, ) Ay, y)
corresponding to the Feynman diagram fig. 2.5. The reader is invited to work
out the weight factor indicated. It comes about by considering all the different
combinations giving the same contribution.

2. It may happen that we let the functional derivatives eat .J factors in such a way, that
all derivatives with J having the same argument are used on different propagators.
This will give us a term

g9’ d. ad, A3
2.3!/61 zd'yA°(z,y)

corresponding to the Feynman diagram fig. 2.6. Again the reader can try to figure
out the combinatorics giving the overall factor.

Now hopefully the general idea is clear. It should also be clear that some general
technique and insight would be very helpful. Hence the work involved in going from the
Wick theorem level to the Feynman-rule level.

2.4 The Feynman Rules in z-Space

2.4.1 An Alternative Version of Wick’s Theorem

First we recast Wick’s theorem into a form, slightly more convenient for our purpose:
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Wick’s Theorem (second version)

AT [om [ VIeItIoy (2.35)

M

ZlJ=e

Let us repeat the formula in detail:

210) = esp(s [ drayA(e - y>%@)%@)}
< {expl [ d2(~V(6()) + T2 omo (2.36)

The meaning is that the functional differential operator expressed by the first factor has
to act on the second factor, and afterwards one should put ¢ = 0.

Eq.(2.35) is a direct consequence of Wick’s theorem in the form eq.(2.25) and the
following Lemma:

Lemma (Coleman)

Let F' and G be functions of n-dimensional vectors (z) = (x1, ..., 2,) or (y) = (Y1, .-, Yn):
F(l‘) = F(xlv ...,$n), G(y) = G(yla ayn)

Then 9

F(ga)G @) = Gg HEW)e™ =0 (2.37)

Proof:
By Fourier decomposition it is enough to prove the lemma for functions of the form

F(z) =¢"", G(z)=¢e""
where a - = a1y + ... + a2, etc. Then consider the left hand side of (2.37):
0 0 pr e 1 0

e — L0 F 0T i .2 \ym bz
F(ax)G(x) e"ore mz::O m!(a 835) e
Now 5
ax.ebm — bz_ebw
and 5
(a)meb-m — (bi)meb-m

showing that the action of any function of 0/0x; results in multiplication by the same
function of b;. Hence we get for the left hand side
ea-%eb-m — ea-beb-w — eb-(a+m)

Similarly the right hand side gives
0 Ty bgr [0y Ty
G(a_y){F(y)e }yEO =e % {6 € }yEO

e(ate) (2.38)
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This completes the proof of the lemma.

We now apply the lemma to the form of Wick’s theorem, eq.(2.25) for Z[J] with the
following “translation”: The vector (x) with components x; is replaced by the “vector”
J with components J, = J(x). The vector (y) is likewise replaced with the trial field ¢
with components ¢(z). Also

x-y—>J-p= /d%J(x)qﬁ(x)
etc. For F(x) we use
F[J] — e—fdde(J(:v))

and for G(y) we use
G(9) = ¥

Then the left hand side is our old expression eq.(2.25) for Wick’s theorem, and the right
hand side is the new one eq.(2.35).

2.4.2 Statement of the Feynman Rules in z-Space
For definiteness let us consider a general interaction of the form
V(g) = g¢" (2.39)

where p is a positive integer (usually greater than 2, since p = 2 corresponds to a mass
term and could have been absorbed in the “free part” of the theory). It is then easy to
see what happens if we have a sum of terms like that.

We now state the

Feynman rules in z-space for constructing an n-point Greens function in
Nth order of perturbation theory in ¢

as the following 4 rules, later to be supplemented:

Rule I On a piece of paper, mark n dots and label them with the names of the arguments
of the Greens function, x1, ..., z,. Further mark out N “vertices” like this

NN N

T T2 Tn Y1 Y2 Yn

with p “legs” emanating from each, and mark the vertices yi, ..., yn-.

Rule IT Connect the dots to the legs of the vertices by simple lines. At this level the legs
are treated as distinct. Draw a diagram for each way in which this may be done.
These are called the Feynman diagrams in z-space.

Rule IIT For each diagram, D, construct it’s value as follows:
FjgN)(xla e UUn) - /ddyl e 'dd?JNIEJN)(xIa o Ty Yty -y ?JN) (2-40)

[},N) is a product of factors:
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DS
X, X,

Yy

Figure 2.7: Beginning of the order g' Feynman diagrams for the 2-point function in ¢?
theory.

e For each vertex, put a vertex-factor
2 1

9= 3 P D legs

e For each line connecting dots and/or vertex-legs, put a propagator-factor

where z and w are the labels of the dot and the vertex.

Rule IV ,
G (2, ...y ay) = 5 STFS (24, ) (2.41)
D

Finally then
G(x1y ey y) = > G2y, .0 2,) (2.42)
N=0

These are in principle the complete rules of perturbation theory. But very many diagrams
usually give exactly the same contribution. Often this allows a simplification in the rules,
in particular when we consider the momentum space versions. Then quite often the factor
% gets at least partly cancelled. We shall come back to all that. But it is useful to first
prove the above 4 rules. Before we do that we consider an example.

Example of the Use of Feynman rules in z-space: The 2-point function to
order ¢' for p = 4.

We start marking out the two dots, x;, x5 and the one vertex, y fig.2.7. Then we produce
all possible diagrams. First the ones where z; is connected to xs, i.e. we start with fig.2.8.
and get figs. 2.9. These diagrams not only give the same contribution, they even give the
same integrand. And we find

Fp, = Fp, = Fp, = —g/ddyA(a:1 —22)A(y —y)Ay — y)

Next we consider diagrams where x; is connected to one of the 4 legs from the y vertex.
Choosing a leg, x5 has to be connected to one of the remaining 3 legs, and the diagram
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X, >< X,

y

Figure 2.8: Beginning of the disconnected diagrams.

x] x2
\_y/ !

X X, D,
\/

‘x] ‘XZ

Figure 2.9: The 3 topologically equivalent disconnected diagrams.
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D,
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X, X

D,
X

D,
X

Figure 2.10: The first half of the topologically equivalent connected diagrams.
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D,
X, X

Du

D,
X, X

D13
X; X,

D14
X, X;

D
X; X;

Figure 2.11: The second half of the topologically equivalent connected diagrams.
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can be completed in just one way by connecting the last two legs: figs. 2.10,2.11. Again,
evidently all these diagrams give exactly the same contribution, and we get

Fp,=--=Fp, = —g/ddyA(x1 — ) A(xs — y)Aly — y)

This completely trivial example is already quite complicated to analyze using rules I-1V.
Hence, we shall soon be very interested in deriving some simplifications. Nevertheless
they form a good starting point.

2.4.3 Proof of the Feynman Rules

Using our second version of Wick’s theorem and the definition of the Greens functions we
get

B S Z[J]
G(x1,.yty) = 57 271)'-'5J(35n)|J:0

(
: = - x xT))— T T
A5 p(11) - ... Plg)e” JEVOEN-T@IDNY 1 (2.43)

1
= e2

where we have to put first .J = 0 and then ¢ = 0 after the ¢-derivatives have been carried
out. But that shows we may drop the J¢ term in the last exponential:

M

(@1, ey ) = 35586 {g(21) - .- Blan)e [ HVEDY (2.44)

We now want to consider the contribution from N’th order perturbation theory in g. It
is obtained by the N’th term in the expansion of e=V:

G™M(xy, ., x,) = 235275
x {as(xl)-...-cﬁ(xn)(_]i?
X /ddyl---ddyzvqﬁ”(yl)-----W(yw)}qs;o (2.45)

Now we begin to see some of the features of the rules emerging: the factors ¢(zy)...¢(x,,)
are responsible for the dots, labelled 1, ..., z,,; the factors ¢”(y1)...¢P(yn) are responsible
for the N p-leg vertices, labelled yy,...,yny. We see that there is a factor —g for each
vertex and that we have a factor 1/N!, as well as an integration over the position of the
vertices.

But we still have to carry out the §/§¢ differentiations. The curly bracket contains a
total of

Q=n+p-N

¢-factors. Since we put ¢ = 0 in the end, we need exactly the term with () derivatives.
We also see that the number of derivatives will always be even. Hence we can only get a
contribution different from zero provided

Q=2
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is even so that ¢ is a positive integer. We then find

11
G(N)(xl, o XTy) = aﬁ /ddzlddwl L ddzqddwq
) ) ) )
Alzy —w Az, —w
5ot T 5t Sae) T ) 5oy

x (@) - ... ¢(xn)%/ddyl...ddywp(yl) o 8P (yn) (2.46)

Thanks to our second form of Wick’s theorem, which we have been using, we are very
close to the end. In fact the differential operators

) )
550 ™ 55w

exactly have the effect corresponding to connecting dots and legs by lines as in Rule II.
For example, if §/6¢(w) acts on a factor ¢(y), the result is §%(y — w) and the integral
over w implies that we get A(z — w) replaced by A(z — y). Similarly with ¢/0¢(z). We
see that we may keep track of the result by drawing a line between the two factors ¢ on

which the §/d¢’s acts. Thus, if §/d¢(w) acts on ¢(z;) and §/5¢p(z) acts on the 2'nd factor
¢(y;), we draw the line in eq.2.47.

(8(21) - or D)oo - Bn) D™ [ dyy..dbyn® (1) - ...

/ d®zd%w

e O(U7) B(y;)ed(yy) - oo B (yn)}

p factors

(2.47)

Such a line is called a Wick contraction, and we see that it gives the propagator factor

A(z; — y;). Now there is a similar term when 6/d¢(w) acts on the 2'nd factor ¢(y;) and
d/d¢(z) acts on ¢(z;). This gives a factor 2 for each factor

) )
5656

so that the factor 1/29 gets cancelled. Likewise the contribution eq.(2.47) is obtained by
letting any of the ¢ factors with a propagator surrounded by two functional derivatives
after ¢ act. Hence the factor 1/¢! is also cancelled.

This completes the proof of rules I-1V.

We finish by the remark that a contribution identical to the one in eq.(2.47) is obtained by
letting the Wick contraction line end on any of the factors ¢(y;). Hence we shall often get
p! identical contributions from fully contracted expressions where the Wick-contractions
on the factors ¢(y;)...¢(y,;) are permuted in all possible ways. This indicates that we
might get a nicer notation if we write
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Notice however, that the example in the previous subsection indicates that the situation
is not always so simple. In figs.2.9 we only have 3 Wick contractions (D;, D, D3) instead
of 4! = 24. In figs.2.10,2.11 we have 12 (D, ..., Dy5) instead of 24. We shall have to learn
how to deal with this.

2.5 The Generating Functional for Connected Greens
Functions

We have seen in the examples, that to a certain order in perturbation theory, very many
Feynman diagrams are disconnected diagrams. It also follows from the form of the Feyn-
man rules, that the corresponding contribution to the Greens function is simply the prod-
uct of that of the sub diagrams of the disconnected diagram in question. For this reason
it is enough to calculate all the connected diagrams, the disconnected ones being trivially
formed.

Now it turns out that there is a very beautiful expression for the generating functional
of connected diagrams. Indeed, the generating functional Z[.J] for the full Greens functions
plays a role very analogous to the partition function in statistical mechanics, as we have
discussed. In fact it is the partition function of a statistical system in d dimensions in the
euclidean case. We now have the following:

Theorem

The generating functional, —W{[J], of connected Greens functions, is minus the free
energy, W/[.J], defined by:

Z[J] = eI (2.48)

Proof:
It is convenient to have the concept of n-point functions in the presence of the external
current, J, i.e. without putting J = 0. Such an n-point function is naturally defined as

6’!’7,

G(xl, ) xn)J - 5J(aj1)(5<](xn)

Z[J] (2.49)

everything without putting J = 0. At the very end we may still want to do that.
A further useful object, we shall come back to is the 1-point function in the presence
of .J. The lowest order contributions in a ¢* theory is given by

G(a)y = [d'yA(e—1)J()

-9 / dzdlydyad ys Az — 2)A(yr — 2)A(ye — 2)A(ys — 2)J (1) (v ()
i (2.50)
corresponding to the Feynman diagrams of fig.2.12. Here and in future, we shall use the

notation, that a cross indicates a current-factor. Further, vertices and crosses, that are
not labelled imply that we integrate over the arguments. Let us also introduce the symbol
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Figure 2.12: The first contributions to the 1-point function in ¢* theory, in the presence
of an external current (the crosses).

. + -
N
—

Figure 2.13: Some vacuum diagrams in the presence of an external current in ¢* theory.

T, &—

Ty, O

for the general, full n-point Greens function, in the presence of the current, .J. In particular

is the full 1-point function, and

is the sum of all vacuum blobs, cf. fig.2.13. Similarly, let us use the symbol

0O

for the sum of all connected diagrams for the 1-point function.

By looking at the diagrams and remembering how the Feynman rules work for discon-
nected pieces, it is immediately obvious, that the sum of all diagrams for the full 1-point
function, is obtained by taking all the connected diagrams and multiplying them with all
possible vacuum bubbles in all possible ways:
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The left hand side is the sum of all Feynman diagrams with one external leg ending
in the point, x and in the presence of the external current, i.e. with “external legs”
ending in crosses representing factors of .J at those points, which are then integrated over.
The equation says that we may obtain this sum (which of course includes all sorts of
disconnected components) by multiplying the sum og all connected one point diagrams
with the sum of all vacuum bubbles, connected or disconnected (and possibly containing
“external legs ending in crosses). Notice that this split up can work only for 1-point
functions. For the 2-point function, we might have the two external legs belonging to
disconnected pieces of the combined diagram. But the one external leg in the 1-point
function neccessarily is attached to a diagram which is part of the sum of connected
diagrams for the connected 1-point function.

All this may be expressed as

sZ[J) WL
5J(x) —  0J(x) ZlJ]

(we have introduced the minus sign merely to get the free energy in the end). This is a
(functional) differential equation, the solution of which is immediately written down as

Z[J]) = Ne "]

where A is an integration constant, fixed by choosing a certain normalization for the
vacuum bubbles. It clearly plays no role for the connected diagrams themselves, as long
as it does not depend on anything.

This completes the proof of the theorem.

2.6 The Statistical Weight Factor

Because of the integrations implied in Feynman Rule III, it is clear that we have
Rule V Topologically equivalent diagrams give the same contribution.

Hence, in practice we only draw topologically inequivalent diagrams and then count the
number of them. Also, using the coupling constant, A = A,

A
9=
p:

we use the Feynman rules in the form
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Figure 2.14: A rather general tree diagram in a ¢? theory

Then we construct the diagram for each topologically inequivalent diagram, D and asso-
ciate with that a weight factor wp.

We now look into the construction of wp.

First we prove that:

A tree diagram has weight factor, wipee =1

To get the idea, consider some fairly general example in a ¢* theory, fig.2.14. We have
labelled also the vertices, ¥, ..., y4 over which one integrates. Clearly we get the same
contribution if these names are permuted. In general, at order NV in A\ there are N vertices,
and N! ways of labelling them, so that we understand how the factor 1/N! in our rule
IV gets cancelled. Notice that in stating the rules I-IV we assumed that the position
of dots and vertices from diagram to diagram was unchanged. Therefore, the diagram
corresponding to interchanging say ys; and ys in fig.2.14 would not be drawn like in fig.2.15,
but rather like in fig.2.16 However, figs.2.15 and 2.16 are topologically equivalent.

Similarly, there are 4! ways of joining propagators to legs at a vertex, hence the factor
1/4! in the definition of A gets cancelled. This completes the proof that wiyee = 1.

Rather that giving a general rule for calculating the weight factor, wp, we indicate how
the calculation may be done in several simple examples. In more complicated cases, more
powerful techniques are very helpful, for example, one may iterate the Schwinger-Dyson
equation, to be introduced in a later part. In fig.2.17, we consider the vacuum blob to
lowest order. Here N = 1, so we start by having (using A rather than g)

To find the number of Wick contractions, consider the vertex with its 4 legs, fig.2.18. Leg
1 can be joined to another leg in 3 ways, after which the remaining two legs may be joined
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Figure 2.16: Interchanging ys3 and y, results in this figure!

Figure 2.17: The lowest order vacuum diagram in a ¢* theory.
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3 4

Figure 2.18: The ¢* vertex with labelled legs.

9

o T2

Figure 2.19: Lowest non-trivial order 2-point function.

in just 1 way. Hence
1 1 1

lezﬁ'(@)l'i))—g

Next, we consider the 2-point function to order A, fig.2.19. Again N = 1 and again we
start with % . (%)1. Starting the diagram as in fig.2.20, we see that x; may be connected
to a y-leg in 4 ways. Then x, may be connected in 3 ways, and the remaining legs may
be joined up in 1 way. Thus
1 1 1

tz:ﬁ'(a)1'4'3:§
As a final example, consider the setting sun diagram fig.2.21. Here N = 2 and we start
by 5:(3)?. We begin by looking at the non-contracted diagram (a) in fig.2.22. Now z;
may be connected in 8 ways, giving, say (b) in fig.2.22. Then x5 has to be connected to
the opposite vertex, giving 4 possibilities like (¢) in fig.2.22. Then leg a say, has to be
connected to the other vertex in 1 of 3 ways, (d) in fig.2.22. Leg b say, has to be connected
in 1 of 2 ways, (e) in fig.2.22. Finally the diagram may be finished in just 1 way, fig.2.23.
This is topologically equivalent to fig.2.21, and we get

1.1 1

o _——2. . . . . —
wsett1ngsun—2!(4!) 8-4-3-2 1_6

These examples should make the idea of the weight factor clear. In general the weight
factor is different from 1 whenever the Feynman-diagram in question has some symmetries.

Figure 2.20: Start of the construction of the order 1, 2-point function.
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Figure 2.21: The setting sun diagram.

2.7 The Feynman Rules in Momentum Space

We have already introduced the Greens functions in (euclidean) momentum space:

G(p1yeypn) = /Hddxieizfmjij(xl,...,xn)

= (2m)%6%(py + oo + )G (D1 ey D) (2.51)

The advantage of working in momentum space is that all space integrations may then be
carried out in favour of momentum integrations, and these last ones may be partly carried
out because of translation invariance, implying momentum conservation at all vertices.
The resulting expressions contain fewer remaining integrations, thus for tree diagrams
there will be no remaining integrations.
Writing the propagator like
dip er(@=y)

Alz —y) = / T (2.52)
we see that in momentum space it will be natural to associate a momentum with every
propagator. The direction of the momentum has to be chosen by convention. Letting it
flow from z to y in the above expression, we have associated the exponent, €”® with the
momentum leaving the vertex, z, and the exponential, e=?Y with the momentum flowing
into y. Following what happens at all vertices, it is obvious that the integration over
the x-space position of a vertex, results in a momentum-space delta function expressing
momentum conservation at that vertex. Afterwards the propagator-momenta may be
trivially integrated over until no more delta functions are at hand. By then, we have a
Feynman-diagram of the kind most often considered: each propagator has a momentum
flowing in it, and momentum conservation has already been taken into account in order
to minimize the number of free momentum integrations.

At the external lines, we see that the integration over z; will constrain the propagator
on the 7’th external leg to have momentum, p;, cf. the discussion in sect. 2.1.1.

It is of interest to count how many free momentum integrations remain. That number
is equal to the number of independent [oops in the Feynman diagram. Let us count it as
follows:

Suppose we have a diagram with V" vertices (i.e. V’th order in perturbation theory), I
internal lines and E external lines (the number previously called n). Then to begin with
we have I momentum variables, but they are constrained by V (d-dimensional) delta
functions. However, these are not quite independent, since we have already assumed the
external momenta are consistent with momentum conservation. Hence there are only
V' —1 (d-dimensional) constraints among the momenta, and we end up with

L=I-V+1 (2.53)
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. — — .

Figure 2.22: (a): The non-contracted setting sun diagram. (b): A once-contracted setting
sun diagram. (c): A twice-contracted setting sun diagram. (d): A 3-contracted setting
sun diagram. (e): A 4-contracted setting sun diagram.
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Figure 2.23: A version of the fully contracted setling sun diagram.

(d-dimensional) loop integrations. We may also introduce the order, p, of the vertices of
the theory. If we imagine that we cut every internal propagator, we see that the total
number of free legs become
E 421 =pV (2.54)
Hence
1

1 1
L=3(pV-E)-V+1=V(;p-1)-E (2.55)

We may now summarize the Feynman rules in momentum space:
To construct the N’th order contribution to the momentum space connected Greens
function, G(CN) (p1, ..., Pn) in perturbation theory:

1. Draw all connected, topologically inequivalent Feynman diagrams with n external
lines and N vertices.

2. Label the external lines py, ..., p, with associated arrows indicating a flow direction
of the momenta. Introduce a set of independent oriented loop-momenta, /4, ..., ¢},
and label all propagator-lines by their momenta g;, calculated from the external
momenta and the loop-momenta by momentum conservation at all vertices.

3. For each diagram, D, construct the contribution to the Greens function as

del, dly,
(2m)¢ (2m)

Fp(pr, omn) = | In({pi}, {6:}) (2.56)

4. Construct the integrand, Ip as a product of the following factors:

e For each external line, p; put
1

pi +m?
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e for each internal line, ¢;, put
1

q?-—l—m2

where ¢; = q;({pi}, {£i})-
e For each vertex, put a factor —\,,.

e calculate the weight factor wp of the diagram and put that down as a factor.

5. Construct the total contribution to G(CN) by summing over all Feynman diagrams.

2.7.1 The Most General Bosonic Field Theory

Let us briefly outline the strategy for how to deal with a general case with many bosonic
fields, ¢,, where the index r can be a Lorentz-index, a flavour- or colour- group theory
index, or some other index.

First we identify the “free theory” as the part bilinear in fields. After appropriate
partial integrations the free action may be written as

So= [ 2 Y 6,() A7 6,() (2.57)

where
Ay

is some differential operator. Inverting that operator gives the propagator. If that op-
erator cannot be inverted, it is a sign that we are using a non-independent set of fields,
and one has to think. In gauge theories in particular, a gauge-fixing has to be performed,
possibly some “ghost-terms” have to be introduced, but then propagators may be found.

We may then straight forwardly derive a generalized version of Wick’s theorem in both
forms. In general there may be several different kinds of interactions coupling different
fields together. A generic piece in the interaction part may be of the form

Srl,...,rp = /ddxArl,...,rp¢T1 (1‘) e d)rp (IL’) (258)

(indices not summed over). The object A,, ., may contain coupling constants, and may
also contain differential operators acting on the fields. This interaction gives rise to a p-
leg vertex coupling the fields, ¢,,, ..., ¢, together. The corresponding vertex factor in the
Feynman rules in momentum space with legs labelled by momenta &, ..., k£, is obtained
as follows:

— /ddxl e ddxpel(klml++kpwp)
d o
5¢T1 (xl) 6(]57‘13 (ajp)

This expression follows directly from the straight forward generalization of our treatment
above, valid for a single field. Notice the minus sign. It comes because the path integral
is weighted by e™. As a trivial example, consider the ¢* theory

X

Sty (2.59)

&ZQ/MWWO
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Using the rules we find the vertex
—0%(ky + ko + ks + ky) - A

The rule above will always produce the momentum conservation factor, but we know what
the effect of that will be.



(AY)

DUSUINIU i/ Linrnulvy



Chapter 3

Field Theory of Fermi Fields

3.1 Grassmann Numbers

3.1.1 Motivation

The aim of this chapter is to develop the path integral formalism of Fermi fields in close
analogy with the case of bosonic fields. This turns out to be quite possible. However, there
is a very important new point which has to be addressed: Because of Fermi statistics, it
turns out that the “classical” Fermi fields over which we path integrate, cannot possibly
take values in the set of complex numbers (or any modification of those, such as the set of
complex d-vectors). Instead the “right numbers” for Fermi fields turn out to be so-called
Grassmann numbers, the properties of which we shall first have to familiarize ourselves
with. These are anti-commuting objects. We shall have to learn to develop concepts such
as differentiation, and notably, integrations over Grassmann numbers.

To motivate the discussion, recall that our treatment of bosonic field theory was based
on a close study of the ordinary harmonic oscillator, with creation and annihilation oper-
ators, a' and a satisfying the commutation relation

[a,a'] = —[a',a] = h (3.1)

where we have made Planck’s constant explicit in order to study the classical limit, A — 0.
In that limit, the operators will commute with one another, and hence we represent them
by ordinary complex numbers. This in fact is what we do in the path integral. Another
way of saying this is that in the derivation of the path integral we use complete sets
of coherent states which are eigenstates of the operators with complex number valued
eigenvalues, over which the path integral is performed.

Now that we want to deal with fermions, being excitations of Fermi fields, we have ex-
citations satisfying Fermi statistics, including the Pauli exclusion principle. So our model
is not the ordinary harmonic oscillator, but rather the “fermionic harmonic oscillator”,
defined by creation and annihilation operators, bt and b satisfying the anti-commutation
relation

{b,0'} = {0',b} =h (3.2)

But now we see the strange thing that in the classical limit 4 — 0, the operators cannot
be represented by classical values b* and b represented by complex numbers, since they
have to anti-commute.

71
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However, associated with b* and b we may introduce a Grassmann algebra. It is a
vector space over the field of complex numbers, and generated by b*, b and 1. The usual
axioms of associativity and distributivity etc. have to hold, but the algebra product
satisfies the anti-commutativity property

(0,0} = {b,b*} = {b,b} = {b",b*} =0 (3.3)

In this simple example there are only 2 Grassmann generators. In the realistic field theory
application, we shall have infinitely many, in general, where the b’s are labelled by all the
usual one-particle labels, like momentum and spin, and perhaps colour and flavour, and of
course an index to indicate whether the excitation is a fermionic one or the corresponding
anti-fermionic one. However, let us first study the case of just a finite number of distinct
Grassmann generators.

We see that the algebra can be separated into the even and odd parts as follows: these
may be expressed in terms of an even or odd product of the anti-commuting generators.
Thus in our simple case, the odd part is the vector space spanned by b* and b themselves,
whereas the even part is spanned by b*b = —bb* and 1. Notice that we cannot have an odd
part with 3 Grassmann numbers, since in this very simple case there are only 2 different
ones. Thus

bb*b = —bbb* = 0

since of course

bb =0b"b" =0

as a consequence of the anti-commutation relations. This may be regarded as the (formal)
classical expression of Pauli-statistics.

The reader may wonder what the physical significance of the “classical” concept of
Grassmann fields really is. For bosonic fields, such as the electromagnetic field, we know
there are physical situations, where the true quantum field exhibits properties arbitrarily
close to a classical field. But that depends on there being a large number of elementary
excitations in the same quantum state. That precisely is impossible for fermions. There-
fore the idea of “classical” Fermi fields is probably not backed by similarly significant
physical situations. For us the device of Grassmann numbers may be considered a purely
technical one which allows the path integral formalism to work for these as well. It is a
fact though that this technical development has been extremely useful. It is crucial in
discussions of supersymmetry and in the (also technical) discussion of gauge-fixing and
ghosts.

3.1.2 Elementary Definitions
Consider a Grassmann algebra generated by the set of single generators, {z;} satisfying
{xiv x]'} =0

and 1, for which [x;,1] = 0. An arbitrary function of these, F'(x;) may be expanded in a
power series

) 1<j 1<j<k

Several comments are in order:
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1. If the function values are complex numbers, or more generally, belong to the even
part of the Grassmann algebra, then the coefficients above, F", are complex num-
bers for n even, and Grassmann numbers for n odd. Hence we shall usually allow
ourselves such extra Grassmann coefficients to also be part of the algebra, even
though they are not at the moment considered part of the variables.

2. The power series expansion is truncated if there is only a finite number, N of
generators {x;}. We cannot have terms of order higher than NN, because in such a
term at least one generator will occur twice making the term zero, because we can
anticommute one copy of that generator through the others until it hits the first
copy, giving zero.

3. Since z;7; = —x;x; the coefficient, Fé is taken antisymmetric in its indices, etc.

Differentiation is defined as follows:

0
o, = Vi
0 forj # i (3.5)
I —Tji = I 1 .
al'i J ]a{L'i J
Thus

P T1T2x3...0, = (Sill'gl'g...l'n — (5i2$11'3...1'n + 5i3$1$2$4...$n

i
+ ...+ (—)"_15mx1x2...xn_1 (36)

The best way to think about differentiation, is to imagine that we anti-commute the
variable to be differentiated after, all the way to the left, and then remove it. In the
process a sign is picked up that we have to worry about.

If both f and g are bosonic functions of the Grassmann variables, meaning they belong
to the even part of the algebra, we have

- (F()g(a)) = [ (Dlg() + S g()] (3.7

If on the other hand f is fermionic meaning it belongs to the odd part of the algebra, we
have

T (F@)g(a)) = [ f@lg(a) = @)l g() (3.9

As a relevant example, consider {x;} and {y;} being Grassmann generators. We can then
form the exponential

. . 1
)

ij
where the sum on the right hand side breaks off at the power corresponding to the number
of different generators. We clearly get

afilnw — yMQme
&Uk

0 5 S
;Y% — i Li¥i 310
3yke Te (3.10)
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We now come to the crucial and rather strange definition of integration over Grass-
mann numbers. As will be clear, the usual intuition that integration is like a Riemann
sum is quite useless here. It is better to think of integration as a linear operation. Also
it does not make sense to think of definite integrals, between finite limits. Everything is
more analogous to o
/ dx
—o0

We first define integration for 1 variable. Since the most general function of one Grass-
mann variable, z, is a linear function, it is enough to provide the definitions

/ dv = 0
/ drz = 1 (3.11)
For functions of several variables, the rule follows from
{dx;,dz;} = 0
{z;,dxj} = Ofori#j (3.12)

so that for example

/dl‘ldl'zl'll'g = —/dl'll'l/dl'gl'g =-1

whereas

/dxldexQxl = +/dx1x1/dx2x2 =41

One good thing about this definition, is that it gives a translational invariant definition:
/dxf(x—l—a) = /d:v{fo +fiz+a)} = /dxfla: = /d:vf(x)(: +11)

(depending on whether f! is bosonic or fermionic).
We have the following strange consequences of these definition:

1. Delta function
é(z) == (3.13)

Proof: Consider the bosonic function f(x) = f° + f'z where f' is fermionic.
[dedte =) f@) = [dot—y)(*+ ') = [dofes® — ys'al
= Py [dufa= —yf =+ 'y = f) (314)
qed. Thus [dzd(x) =1 = — [d(x)dx.
2. Differentiation is the same thing as integration.
Consider the example:
/dx2x1x2x3 = — / AdxoxoT1T3 = —T1T3
and

7 T1X2X3 = — 37— T2X1X3 = —X1T3

81'2 81‘2

This should convince the reader.
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3. Change of variable I.

For z,y Grassmann variables, consider the 1-dimensional change of variable

y=ax, a €C

lz/dxx:/dyy:a/dyx

It follows that we must have

Then

y=ar=dy=a ‘dz (3.15)
This “upside-down” behaviour is the main point of Grassmann integration.

4. Change of variable II.

Consider the case of several variables and the linear shift, 4;; € C:
Ty = Aijyj

(sum over j implied). Then using the definition of a determinant it is easy to see

that
n n n n
[Tz = 1> Aiyy; = det(A) [T ys
i=1 i=1j=1 j=1
Here we implied that [}, z; = 2122...7,. Let us also denote

d"r = dx,dx,_1...dxedx,

Then we deduce
- /d”xHa;i - /d"yHyZ- _ (det(A))*l/d”nyi (3.16)
=1 i=1 =1

This implies
= Ay = d"v = (det(A))'d"y (3.17)

So the “Jacobian” is upside-down.

5. Fourier expansion.

We have seen that the delta function is of the form
0" (x) = T129... 24,
Apart from a sign this is obtained by the Fourier formula
3" (z) = /d”pezwi’“

In fact, expanding the exponential, we see that we only get a contribution from the

term 1
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since we can only get a non-zero result from terms of the form +x;25...x,. In fact,
the above term gives us

—nl(z1p1)(@2p2)...(xnps) + contributions giving zero in the integral
n

since factors (z;p;) and (x;p;) commute because also the p’s are fermionic. Hence,
apart from a sign (which the reader can work out) we get

T1T2...TnP1P2---Pn

From this follows, that we have Fourier’s integral theorem:

3
=
I

/d”xew'pf(x) =
fy) = e[ dperrEp) (3.18)

where again € is a sign that we may or may not have to worry about.

3.1.3 Gaussian Integration I. Real Case

We have seen that the trick to develop perturbation theory is to understand gaussian
integration. For a gaussian integral over ordinary (bosonic) variables we get some (irrel-
evant) 7 factors and an inverse determinant of the bilinear form in question. Better: for
integration over real variables we get the inverse of the square root of the determinant,
whereas for integration over complex variables we the get the inverse of the determinant
itself. Even though in our applications the determinant did not play an important role,
it actually does in many field theory applications. What we shall show now is that very
similar results hold for “gaussian” Grassmann integration, however the determinants and
their square roots appear “upside-down” compared to the bosonic case.

Theorem (real gaussian Grassmann integration)

Let {A;;} be a real, (n x n), anti-symmetric matrix such that the symmetric matrix
A? has negative, non-zero eigenvalues only. Then n is necessarily even, n = 2m and if
x1, ..., T, are real Grassmann variables

/ d"ze”" AT = 9™ \/detA (3.19)

Proof:
First consider the simple case n = 2, m = 1. Then A is on the form

(40

detA = \* > 0

-2 0
2 _
= (5 )

and

and
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has negative eigenvalues only. We may work out
vTAx = N2129 — T911) = 2A\1175

exp{z? Az} = exp{2\z,25} = 1 + 27125 + 0

since (7179)? = 0. Then
/dee‘”TAx = /dl‘gdl'l[]. + 2z 15] = 2A

So the result holds in this simple case. Notice that the sign of such expressions are very
convention dependent. Similarly the sign in front of 7 Ax is not very significant. In
general we shall understand many of our formulas to be valid modulo signs only. In cases
where this sign is important one should go over the conventions carefully.

We now introduce the

Lemma

There exists a regular, real orthogonal matrix B such that

0 N
-1 0
0 X
B"AB = —Az 0 (3.20)
0 An
—Am O
Here it is understood that elements not indicated are zero.
Proof of Lemma:
We want to establish the existence of a basis in n-dimensional space
{517 6_)717 9 gma élm}
such that
Aék = Akg,k
Ag_k = _Akgka k= 1, - (321)

It follows that
A2%g, = A(Ne€ k) = —)\ie}

in other words, all the &,’s are eigenvectors of A2, Also, notice that for any vector we have
UTA2U = UiAijAjkvk = —(Ajivi)(Aijk) <0

when no eigenvalue is zero. So clearly, if € is an eigenvector of A? the eigenvalue may be
denoted —)\2. So we take a basis of eigenvectors of A. We now show that any eigenvalue
must be (at least) two fold degenerate. In fact, let

=/

€

Ae

1
A



[§e] rir) 1nedicy Ur rroivivil i /o

Then
Ae = ré'
1
Ae' = XA%*:—Aé‘ (3.22)

This shows that both € and €' have the same eigen value of A%2. Also, they must be
linearly independent, because otherwise €' = f& and

A = \f&

so that A would have the eigen vector €. But that is impossible in a real vector space
since then we could write

A’ = -\’ = f?\%
making f imaginary.

So € and €’ span a 2-dimensional subspace of eigenvectors of A2 with the same eigen
value. If we do the same thing for all eigenvalues of A we have found a basis in which A
takes the form given in the Lemma. To finish we must show, that this basis is orthogonal.
But that is true since

- = ]'—.\—»
¢-¢'==eAd=0

A

since A is antisymmetric. This finishes the proof of the Lemma.
To finish the proof of the Theorem, write

/d"xe’”TA’” = /d”x exp{(B"z)"B"AB(B"z)}
= /d”a: exp{z"" B"ABz'} (3.23)

where we put

v =Bz
Now we have learned that we may do a linear change in the integration variable at the
cost of a Jacobian that appears upside down. But in our case the Jacobian is 1, since the
transformation is orthogonal. So

d"z' = d"x
This completes the proof of the Theorem.

It is instructive to see the consistency between the two upside down results: for the
gaussian integration and for the Jacobian. In fact, consider a non-orthogonal variable
change

7 =Cax

Then
2"V detA = /d”x exp{rT Az} = /d”x' exp{z’" Az'}

— n ./ TreT _ L n TrcT
= /d z exp{z” [C" AClz} = ToiC /d zexp{z’ [C"AC|z}
1
— m T . om
= detC2 \/det[CTAC] = 2™V detA (3.24)

which is consistent.
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3.1.4 Gaussian Integration II. Complex Case

This case is the one we shall mostly use. It is of interest to provide an independent proof
of it.

Theorem (complex gaussian Grassmann integration)

Let z;,y; be two independent sets of Grassmann integration variables. Let A be anti-
symmetric n X n. Then

/d"mdny exp{y’ Az} = detA (3.25)

(Notice that we do not really define the concept of complex conjugation for Grassmann
numbers here, we merely consider the y; independent of the x; without writing y; = x}.
Sometimes ones does use that notation, however, see at the end of this subsection.)
Proof:
Consider directly the expansion of the integrand:

o0
1
exp{yTAaj} = Z N yzl lelle) Tt (yiNAiNijjN)
N=0

sums over repeated indices implied. The rules of Grassmann integration means that we
shall get a non-vanishing contribution only when each z-variable and each y variable
appear exactly once. Hence, only the term N = n gives a contribution. Throwing away
terms with more than one factor of each variable, we get

1
;ZZ(yP(l)AP(l)Q(I)xQ(I))'--- (YP(n) AP(n)Qm)TQn))
1% %

where P and @) run over all permutations of {1, ...,n}. Each of the parentheses is bosonic:
Grassmann-even, and may be permuted at will. For any permutation, P, we choose to
re-order the parentheses so that we get

1
=2 2 _(nAige-rapTap-1)) - (UnAnap-1m)TaP-1m))
142

Now, for a fixed permutation, P, () o P~! will run once over all permutations when Q
does. Hence, we obtain

Z > (g o (UnAng () ZQ/(n))
P qQ

= Z(ylAlmeCQ(l)) oo (YnAnQm)TQ(n))
Q

= e(yya--Yn) D A1001)TQ) -+ An@m) TQm)
Q

= e(y1y2-.-Yn) (T129...5,) Z €QA101)---Angmn)
Q
= €(y1...yn)(x1...7, ) detA (3.26)

where € is a ()-independent sign and € is the sign of the permutation, ). This immediately
proves the Theorem. (In fact our treatment here includes with more details the argument
leading to the form of the Jacobian above).
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It is instructive to see how the real and complex gaussian Grassmann integrations fit
together. Hence let us write

Then
y'Ar = (a” —ib")A(a + ib)

= a’Aa+b"Ab +i(a” Ab — bT Aa)
= a’Aa+b"Ab (3.27)

since the last term vanishes by the anti symmetry of A:
a;Aijbj — bjAja; = a; Aibj + bjAja; =0
Now using the rule for changing variables we find
d"zd"y = Jd"ad"b
It follows that from the rules of real gaussian Grassmann integration we should get the

result
J2™(VdetA) 2

for the integral. This is consistent since one may work out that

J=2""

3.2 The Fermionic Oscillator

To set up the path integral formulation for Fermi fields, we follow as closely as possible
our treatment for bose fields, using the formalism based on Grassmann numbers. Hence
we start by considering the fermionic oscillator. Our treatment, however will be more
brief than in the bosonic case, to which the reader is referred for details concerning the
underlying philosophy.

Consider the fermionic oscillator with creation and annihilation operators bt and b
satisfying (h = 1)

.0y = 0= {01, (b =1

The Fock space is simply two-dimensional (rather than infinite dimensional as in the case
of the ordinary oscillator), and is spanned by

0), b'[0)

(b1b]0) = 0 by “Pauli statistics”, {b',b'} = 0).
Let b be a Grassmann number. Then

1b) = "0y = (1 +57)[0) = (1 — bbT)[0)
is a coherent state with a grassmannian eigenvalue, b, for b:

b|by = (b + bbb")|0) = b|0) = b(1 — bb")|0) = b|D)
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Similarly )
(b = (0]e"™"

is a coherent state with eigenvalue b* of b'. The normalization is
(b*[b) = e
and the completeness relation is
I= / db*db|b) (b e~

since sandwiching that between two arbitrary coherent states, gives back the normaliza-
tion.

A very useful property of the coherent state technique for fermions is that these states
are all “Grassmann-even”: If we consider the vacuum state to have Fermion number 0
and the once excited state, IA)T|0> to have Fermion number 1, then these have opposite
Grassmann parity. However, in the coherent state the latter occurs with a Grassmann
number coefficient. For this reason there is no question that a Grassmann number coeffi-
cient commutes with the coherent state. For states with odd Fermion numbers however,
one has to consider those to anticommute with the Grassmann number coefficients, which
is a nuisance.

The bosonic oscillator had a hamiltonian

1 1

Hgp = §w{€fr, a} = wlala + 5)

Similarly, the fermionic oscillator is taken with the hamiltonian
. 1 s NP |
Hp = 5w[bT, b] = w(b'b — 5)

The “zero-point” energies have opposite signs as is well known, but that in fact will not
concern us here.

We modify the hamiltonian by adding grassmannian current terms, getting for the
classical and quantum hamiltonian (and dropping the Fermi-index, F)

H(b*,b) — H(b", b;t) = wb'd—bn(t) —7(t)
H by — HO bit) = wbtb—bin(t) —7 (3.28)
Then o

(b*|H (b, b;t)|b) = H(b*, b;t)e’™

We may then derive the path integral for the transition amplitude between coherent states
in complete analogy with subsection 1.4.2, but paying particular attention to the order of
Grassmann numbers and associated signs:

F(b*,t/; bt) = <b*,t,|b, )
- /Hdb*(tz’)db(ti)e_b*(ti)b(ti)

O () e |b(t)) (b (ta) e T bt 1)) -
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WO () e T |b(t))
- / T v (t:)db(t:)

exp{b" (t')b(tn) — b* (tn)b(tn) + 0" (tn)b(tn-1) = b" (tn-1)b(tn-1) + ...
= b (t)b(tr) 4 b (t1)D(t)

_ tt' drH(b*(7), b(r): )}
- / T " (t:)db(t:)
exp{/ttl dT[i)* (T)b(T) —iH (b*(7),b(7); )] + b*(¢)b(t)}

- / Db Db exp{i /t " dribt (D)b(r) — H] + b (1)b(t)} (3.29)

b*
b

Stationarity leads to the equations of motion:

b — iwb* +in =
b+iwb—in = 0 (3.30)

with the solutions

b(r) = betT) 4 /T ey (s)ds
t
tl

Fir) = B i [ s)ds (3.31)

The path integral evaluates as usual to the exponential of the critical value times an
irrelevant determinant. As for the bosonic oscillator, we get for the action part of the
exponential, evaluated on the classical path

t

" dr bt ()b(r) — iH (5 (1), b(r): 7)] = tt,dT[l}*b—i(wb*b—b*n—ﬁb)]
- ttl dr[(i* — iwb* +im)b+ by — i /ttl drb* (7 () (3.32)

This yields for the transition amplitude

t’

F(b*a tl; b, t) = exp{b*bei“’(t,_t) +1 ds[ﬁ(s)beiw(t—s) + b*n(s)eiw(s—t’)]

=

t t )
- / dr [ dse®=9n(s)n(r)} (3.33)
t T

and the vacuum expectation value (the case b = b* = 0) for t - —o0, t' — +00, in other
words, the partition function, becomes

2l = O0yexpi— [ dr [ dse = Im(s)n(r)} (3:34)

So far things are really very similar to the bosonic case. Now comes a difference. In the
bosonic case we could form a position, ¢, and a momentum, p, from the creation and
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annihilation operators. And we could build a lagrangian with p removed in favour of a
¢ (historically one went the other way round). this ¢ then appears quadratically in the
lagrangian (the velocity squared). but such a possibility does not exist for the fermionic
oscillator. Indeed the square of any Grassmann variable would be zero. In fact, we cannot
really leave the present path integral in phase space in the fermionic case: we cannot go to
configuration space. Likewise, we cannot attempt to put 7 = n like we did in the bosonic
case (the common value of 7 and 7 got related to a real current .J). We clearly see from
the result that this would give zero in the exponential.

However, let us rewrite our path integral in phase space in a way that makes the
transition to field theory more suggestive. In fact let us write

b — o
b= (3.35)

Also, in the action part we may write

| T awiwen = - [ awmaw

whenever we have vanishing boundary conditions corresponding to the vacuum expecta-
tion value. With this notation we get for the partition function

Zl.n) = [ DEDYexpli [ dtlivon — wi + v + 70}
Let us evaluate this by completing the square as usual (using “functional notation”)
2l = [ DIDGexp{i [ difp(io, —w)w + P + 70}
= [ DIDG exp{i(@ +7(i0; —w) ) - (i0h —w) - (0 + (10, —w) ')}
exp{ =iy - (10 =)™ 1)
= Z[0,0exp{~i [ drdsij(s) Dy (s, 7)n(r)} (3.36)
Using eq.(3.34), we get the fermion propagator in the form

Dp(s,7) = (i0; — w)’l(s,T)
—if(s — 7)e Wl

dE e—iE(S—T)
= — 3.37
2n E —w + 1€ ( )
We may check that
dE —iE(s—T)
(10, ) Dp(s,7) = [ 5B —w) g = 05— 1)

We now want to “go to euclidean time” following the idea of sect. 1.5. Putting ¢t — —itg,
we find

Zolin) = [ DU expli [ d(its) Bl —wp+ Ty + 0}
= /DED@/) exp{— (Y = (0, +w) ) (B +w) - (b — (B +w)"'n)}

exp{7 - (0, +w)~ " n}
—  Z[0,0]z exp] / drds(s)D(s, 7)n(r)} (3.38)
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where the euclidean propagator is

dE e—iE(S—T)
D(s,7) = B et .
(5:7) = O +w)™ =i | o (3.39)
Indeed o)
E —E(s—T1
(0, +)D(s.7) =i Z—W(—ZE ro) e = d(s 1)

We may pass back to the Minkowski propagator as usual by analytically continuing s —
isy and 7 — i1y (M for Minkowski), and at the same time rotate the integration contour
by “not quite —%” so as to avoid crossing the pole at Er = —iw. Thus we write E in the
integral representation of the euclidean propagator and we rotate the integration contour

as Eg = (—i + €)E. This gives
o [ d(—iB) e~ e )
D(isr, _ /
(ZSM ZTM) 4 By (—7;—|—5)E_|_7;w

. [ dE e iEm—um)

[ dE e Flsm—ma)

"o E—wtie

= Drls; ) (3.40)

Here we used that the pole occurs for £ ~ w > 0.

3.3 Fermi Fields

3.3.1 Free Fermi Fields

In sec. 1.5 we gave our notation for Fermi fields in Minkowski space. The free lagrangian
density is

Ly = —P(P+m)y (3.41)

Now the field operator contains an oscillator contribution from each wave vector. Not
just the annihilation part, but also (for Dirac fermions) a creation part for anti-fermions:

O(@) = Yo [bs (Pus ()€™ + di(F)vs (e "]

p’s

with pg = /p2 + m?. The spin index, s runs over the values i%, and the spinors u,(p) and
vs(p) are fermion and anti-fermion solutions to the Dirac-equation. They have 4 Dirac
indices which we do not write explicitly.

In the euclidean case we simply have (cf. the oscillator discussion),

Lo =9 +m)yY (3.42)

the only difference being that (i) ¢ and 1 have to be regarded as independent degrees
of freedom (rather than being related by hermitian conjugation and 7), and (ii) the
gamma-matrices are all hermitian:

Yu="=11
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and the anti-commutation relations are

{’Yu, ’71/} = 2]—5#1/ (343)

I being the 4 x 4 unit matrix (in the 4-dimensional case). We then get for the euclidean
path integral for the free fermion problem

Zyfn) = [ DDy exp{= [ dw(B(p+m)v —m — )
= [ DIDG exp{—(@ — (D +m) (P +m)( — (F+m) )}

x exp{n(P+m) 'n}
= Z[0,0] exp{n(P +m) 'n} (3.44)

with the usual functional notation. In complete analogy with the oscillator case we get
for the euclidean propagator

d4p e_lp(x_y)
(2m)* p+im

Syl y) =i / (3.45)

Notice that 1/(p + im) means the inverse of the 4 x 4 matrix, (p,v, + ¢mI). On checks
that

d* —ip(z—y) d* —ip(z—y)
b ¢ - / b  _§e—y)  (3.46)

(P+mi [ 52 Gy A m)

@2m)* p+im
The continuation to the Minkowski space may be performed just as for the oscillator case.
The fermionic propagator is related to the bosonic one. In fact notice that

(P+m)(Pp—m) = 9*—m?=—-A""
(p+im)(p—im) = p°+m’ (3.47)
Hence we would expect that
(D—m) H(P+m)™' =-A

(2 —m)eA(z,y) = —=Sp(2,y) (3.48)

One easily verifies from the Fourier decomposition formulas that this is indeed correct.

Just as in the bosonic case, one can easily establish the relation between vacuum
expectation values of operators, on the one hand, and path integral expectation values on
the other. In the Minkowski case the relation is

(O {ay (1) - - oy, (wn) Py, (91) - - Wy, (yar) }]O)
= [ DEDYEE (i, (21) -ty (o), (1) - B (1)} (3.49)

Here we have written a time-ordering operator in the vacuum expectation value. It is
analogous to the one in the bosonic case, except that the operators anti-commute under
the time ordering sign, rather than commute as in the bosonic case. This of course agrees



rir) 1nedicy Ur rroivivil i /o

with the path integral expression. For completeness we have also indicated the Dirac-
indices here in this correlator of N fermion operators and M anti-fermion operators , as
it is loosely refereed to. (Of course, for vanishing external currents, this will vanish unless
N = M.) The proof is a trivial generalization of the bosonic proof. The fact that Fermi-
operators anti-commute, causes a certain amount of head-aches connected with rather
trivial but tedious book keeping of signs. A useful technique for handling the situation,
consists in multiplying each fermion operator with a constant Grassmann variable, indeed
with a Grassmann spinor:

Yal(@) = Cb(2)

This combination behaves just like a commuting bosonic field. At the end of the calcu-
lation, one may then remove all the unwanted constant Grassmann numbers, and only
think about the sign problems at that point.

Thus in the euclidean case we may write:

/DEDW*S% {Civo(@1) - v (@n) P (W) G- (yar) i}
z ) - ) ) )

Here for example
PSS o i
Bt )

3.3.2 Wick’s Theorem for Fermi Fields

As an example of an interacting field theory involving Fermi fields, consider the euclidean
QED case:

Zopoln,J| = [ DUDYDA,
expl— [ @2fFD +m)y — T~ Ty — Ay~ TFuFul)
- / DYDYDA,
exp{— [ d'a[B(p+m)w 7 - P}

exp{ie/d‘lx@ A} exp{/d4xJ -A+ % /d4FWFW} (3.51)

Define .
0r 71 — L[ 4, 7.
200 = / DA, expi / d'wFy Fy + / d'zJ - A} (3.52)
Then we may write
o ) )
Zorpl = ' Yo (—
QED[na m, J] exp{ze / d x( (577(1‘) )/YM (SJM(QT) 5ﬁ($)}
A URIVAE (3.53)

where 7, was worked out in eq.(3.44).
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Further, for a quite general interaction involving the Fermi field and the A, field (for
purpose of illustration: not even necessarily gauge invariant),

SI (Ea 1/)7 Au)
we would get for the corresponding partition function
2.0, ) = exp{ =81 (—z, =, L)y 2017, 5] 251 (3.54)
\n.mn, — p 1 677,5ﬁ,5t] FlT, N4 4 .

And that is the (first version of) Wick’s theorem, cf. sect. 2.3.

We now go to the second version of Wick’s theorem, in analogy with the bosonic
discussion in sect. 2.4. We first write down the:

Fermionic version of Coleman’s Lemma

6 o 6 o
F( —)Z[W,U]ZZ[—@aﬁ

~on’om
The proof is entirely analogous to the bosonic case and is left as an exercise for the reader.
If now we suppress the dependence on any other field than the fermionic field which
we currently consider, we obtain the following:
Second version of Wick’s theorem

o 0., - 4] d
exp{—S’I(—%, %)}eﬂ'sm = exp{_@SFﬁ
In the case of QED we are not yet ready to treat the photon field the same way. The
reason is that because of gauge invariance, the photon propagator is an object that does
not make sense until a gauge has been fixed. But the whole problem of gauge fixing will
only be dealt with later on. However, once that has been achieved, basically there is a
completely similar result. There is a photon propagator and a “free” photon partition
function. (It depends on gauge-fixing terms in addition to the ones we have written down.
Also, in the case of a non-Abelian gauge theory, we have a similar situation, but then the
gauge fixing further implies the introduction of certain “ghost-fields”).

](F(av zp)ean-l_ﬁw)mzwzo (355)

}exp{=Sr(¢,¥) + ¢ + 7} 5oy= (3.56)

3.3.3 Feynman Rules for Fermi Fields

Again everything is extremely similar to the bosonic case of sect. 2.4. Hence we mostly
give an example and point out one or two important places where the characteristic sign-
consideration of fermion problems come into play.

Consider the very simple Yukawa interaction

Ly = giipo (3.57)

Then the generating functional for the full Greens functions may be written

M=

200, J) = X35 exp{—g [ d'aiuo+ [ dafn+ o+ ol gy (359)

Consider first the Fermion two-point function to lowest order:

0 ) —
555755 (VD0 5omg
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Figure 3.1: The fermionic two point function. The arrow is taken to go from the argument
of a 9 to the argument of a 1, in other words, we think of the fermionic (as opposed to

the anti-fermionic) part in our convention.

w, w,

WZ W3 W4
L4 o L4
\ \ \

\ \ \

\ \ \

\ \ \

\ \ \

\ \ \

y Z, 2 2 2,

Figure 3.2: The tree diagram for a fermion line emitting N bosons

This is nothing but the fermionic propagator, in analogy with the bosonic result:

(01 (2)%(4)[0) = Sr(, )

Notice this is a matrix equation. Next consider the connected tree-diagram for a fermionic
two-point function and a bosonic N-point function fig.3.2. We are led to work out

1 N 1Ly 4 6 0
/d u;d Ulégb(u,)A(u“ l)6¢(vi)
1 N+1 . . ) )

(N+1 H /d zid y;(— M‘S’F(xj’yj)m)

U / (=g ) [T o))}
N+1 . ) )

= N—|— 1 H / xjd y] ¢(x]) (xj’yj)m)
{ /d Zl kl:[ gA Zlawk )E(y)}
= /]:[d4ZlSF(l',ZN)SF(ZN,ZN_1)...SF(Zl,y)

(—9)A(wy, 21)(—9)A(ws, 22) . . . (—9) A(wn, 2n) (3.59)

Here we made use of the fact that
0 0

2 g2
6" 5y
gives +Sp when it hits a ¢1) with the ¢ to the left of the ©». Also we could move the ()

all the way to the left without picking up any signs since it was moved passed an even

number of Grassmann fields. The reader may verify that the statistical weight factor
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Figure 3.3: The reversed tree diagram for a fermion line emitting N bosons, i.e. the

correlator involves ¥(z)(y) = —(y)¢ ().

Figure 3.4: A fermion loop emitting N bosons

comes out to be 1 just as for purely bosonic tree-diagrams. We observe the Feynman
rules, that the fermionic propagator is what we expect. In matrix notation the fermion
propagators are written down from left to right when we make our way along the fermion
line against the direction of the arrow. The vertex in this case is merely

-9

the minus sign coming from the fact that in the euclidean case we consider, we are
dealing with the exponential of minus the (inter-)action. It is obvious, that if instead
we considered the diagram fig.3.3 where it is understood that the fermionic operators
are taken in the opposite order, then the result is the same except for a sign change. In
Minkowski space, we would think of the time-ordered product of operators, and in fig.3.2
we would have a situation where the operator 1)(y) sometime in the past created a fermion
that gets destroyed later at = by ¢(z). Hence we think of a fermion line passing from
the initial to the final state. In the reversed figure, correspondingly we would have an
anti-fermion passing form the initial to the final state. We see that this costs a change of
sign.

Finally we consider the loop-diagram fig.3.4 where the calculation is entirely analogous

except we do not have the factors ¢ (x)1(y). We see that in order to always produce the
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situation where a 1 stands to the left of a ¢ we must move the last factor ¢(zy) all the
way to the left. But that means anticommuting through 2(N — 1) 4+ 1 Grassmann fields.
Thus

A fermion loop gives an extra factor -1
To understand how to pass to Feynman rules in momentum space, consider the Fourier

transformed of the diagram in fig.3.2. As in sect. 2.1, we consider first (cf. eq.(3.59))

é(10,]9'; Gy qn) = /d4xd4yd4w1 . d4wN@—i(m+p’y+q1w1+...+quN)
/d421 .. 'd4ZN7:/ d4kN+1 €ikN+1($ZN)Z_/ d4k'N e*kN(szZN—l)
(27‘-)4 }éN—}—l +im (27‘(‘)4 }éN +im
) d4k1 efikl(zlfy) d4T1 eirl(wl—zl)
Z/ (2m)* K +am —g)/ (2m)* 12 + M2

d4,,,.N eiT'N(wN*ZN)
(= 3.60
( 9)/(27r)4 i+ M2 (350

Here we denoted the boson mass by M to make it distinct from the fermion mass, m. To
extract the usual delta function of 4-momentum conservation, we change variables (using
translation invariance):

Z21 — T+ 2z

y — T+y
w, — T+ w (3.61)
giving
G, psqu, ... qy) = /d4xd4yd4w1 . drwye PP ot tan) o iyt aven)

% /d4z ds Z/d4kN+1 etk r12n Z/ d*ky e~kn(zn—2n-1)
b M ent fya+im ) 2ot ky +im

/ d4k1 e—zkl 21—Y) / d47” 617“1 wi—21)
.1
(2m)* —Hm -9 r? + M?

d4 er(wN ZN)
(= .62
( 9)/(27r)4 3+ M2 (3.62)

We now perform the integrations over the various points in coordinate space successively
with the following results:

z oo 2n)'tp+p g+ +gn)
: (27’(’)4(54(—]7, + kl)
wy o (21)46Y (—qu + 1))

wy (2%)454(—111\{ +7y)
zy o (2m)*'0t(—ky + kng1 — )

z1 : .(27r)4<54(—k1 +ky — 1)) (3.63)
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Figure 3.5: The same tree diagram as before, ready for evaluation in momentum space.
The k;’s are fixed by momentum conservation.

We see that we produce energy-momentum conservation delta functions at each vertex
as usual and that we may use fig.3.5 to write down the result for the “reduced” Greens
function in momentum space (the one that has it’s overall momentum conservation delta
function removed) directly as:

G(p, v N) : i —|—i :
yPidis .54 p+im fy+im  fo+im P +im
1 1
N
A N 3.64
( ) q%—!—MZ (1]2\74_“42 ( )

Notice that this is a matrix in Dirac indices, just like the Greens function we start from:

~ ~

(Ol (@) 6 (1) d(wr) . .. Hlwn)]0)

And notice that we work our way against the fermion-arrow. Hence we deduce the fol-
lowing Feynman-rules in momentum space:

Bosonic propagator = 1/(¢* + M?) =
Fermionic propagator = i/( f + im) =
Fermion-Boson vertex = —¢g =

As a final example, consider the evaluation of the loop diagram fig.3.4 in momentum
space. We can now directly write down:

1

N
Gl—loopq,.“,q — __gN
@vay) = 0" oy

/ d*l T i i 0 ) (3.65)
(2m)* J+im fy_1+im T fy 4 im .
where

Il = ky=kn



rir) 1nedicy Ur rroivivil i /o

kl = l+Q1

ki = kioi+q
: (3.66)

From these examples we see that we may generalize and obtain the Feynman rules for a
completely general interaction part as follows:

Consider a piece in the interaction, S;[1), ¥, ¢1, . .., ¢,], involving the fermion fields, v
and v as well as bosonic fields, ¢1, . .. #,. We have seen already how to find the propagator.
The vertex corresponding to this interaction piece is

/d4xd4yd421 . d4zn6_i(p’"+p’y+‘“z1+'“+q"z”)
0 0 - 0 )

61 (21) o 60 (2n) 5@@) 6()
)

Notice that this will produce a matrix in Dirac-space: i) 82 column whereas o)

){_SI[E,w,QSl,---,QSn]} (367)

is
a row.

Let us consider how the rule works on the two examples we have considered. For the
simple Yukawa interaction, we find

4, . 34, g4 —i(ps+p y+qz 0 0 4
[ ity zemievvien ) (9 [ b ) w)sw)

56\ 53,0) S0
= —g0u(2m)0(p+p +q) (3.68)

in accordance with what we would expect from the examples worked out. Similarly from
the QED interaction we get

. 5 J o
4 4 4 —i(p121+p2x2+pszs) _
[ dtodrad'aze EREN TR EN RIS
fie [ d'w.(2) A (0) 0 eatra())
= (2m)*'0"(p1 + p2 + pa)ie(Vu)ap (3.69)

The technique indicated here will turn out to be particularly useful for deriving Feynman
rules for interactions involving derivatives, such as is the case of non-Abelian theories.



Chapter 4

Formal Developments

4.1 The Effective Action

4.1.1 The Classical Field

Let us consider a rather general euclidean quantum field theory, described by the action

S[e]

where “¢” may be considered a general set of fields, but we want to “pollute” the notation
as little as possible, so we shall refer to the space time point, x, as well as any other labels
on the field collectively by an index:

i

Thus, for a gluon field, Af(z) with Lorentz index, j, colour index, a, and space time
point, x = (¢, %), we let i stand for

i={z,a,n}

Similarly we shall imply sums over repeated indices, ¢, and mean those to include if
necessary any integration over space time points.
In previous sections we have seen that

Z[J] = /D¢€*S[¢]+Ji¢>i

is the generating functional for the “full” Greens functions. It is very analogous to the
partition function in statistical mechanics. Likewise we have seen that W[.J] defined by

is the generating functional of the connected Greens functions. It is very analogous to the
free energy in statistical mechanics.

We now want to introduce yet another generating functional which turns out to be very
convenient in many cases. It is the Effective Action. It will be introduced as the generating
functional of the one particle irreducible Greens functions, or 1PI Greens functions for
short. These are essentially (see later) the sums of diagrams which are not only connected,
but which also have the property that they cannot be separated in two by cutting a single

93
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Figure 4.1: Examples of one particle reducible (a) and one particle irreducible (1PI) (b)
Feynman diagrams

propagator line. Fig.4.1 provides examples.

It is probably rather unclear at the moment why such a strange definition should lead
to anything particularly useful. However, we shall soon see some very nice properties
of the effective action (justifying the name). It turns out to be the most natural object
to work with in renormalization theory. The effctive action is very analogous to the
thermodynamic potential in statistical mechanics.

We begin by introducing the classical field, ®¢![.J], for a given external current, .J;.
By this we mean the field which would be observed in an actual classical experiment. It
is precisely the quantum theoretical expectation value of the field, properly normalizied:

¥ 1) = O] = (0/4i]0),/(010)
= [ Doe st eg, 21
1 0

~ Z[J] 55,21
)
= E(—W[J])

= Gi(x; ) (4.1)

where we sometimes like to write (z) instead of 7. We see that this “classical field” has
several interpretations:

1. Tt is the normalized, quantum theoretical expectation value of the field variable,
something which usually vanishes unless the external current is non-vanishing. Clas-
sically this is very familiar. The electromagnetic field, for example, vanishes unless
there are some external charges or magnets around. These are indeed described by
external “currents”. From given external currents we may uniquely calculate the
classical, “classical” field. The same is true in the quantum problem in principle.
But the calculation is much more difficult in general. For an electromagnetic field it
will not be enough to use the classical Maxwell equations of motions. There will be
“quantum corrections” that Maxwell did not know about. The object ®* is what
an actual measurement would find on the average.

2. We see that this classical field has the interpretation of being the connected one-point
function in the presence of the external currents.

In accord with our previous notation we introduce the picture in fig.4.2 for the classical
field. As the simplest possible example, let us consider the free bosonic field theory,

Sold) = 5 [ 210,000 -+ m*] = 6.1,

where

A ¢ = [-0,0, + m?|p(z)

ij
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Figure 4.2: Pictorial representation of the connected one-point function: the classical
field.

I &—X

Figure 4.3: Pictorial representation of the classical field. A dot represents a fixed point
in space time, whereas a cross represents a point at which a factor .J is encountered and
which is integrated over.

for i = (z). Adding an external current, the action is modified into

1 _
SO[¢] —J o= §¢iAij1¢)j — Jidx
and the classical equations of motion give

or

bi = NijJ;

(Beware that A;jl # 1/A;;. The meaning is that it is the inverse matriz or integration
kernel of A;; so that AikA,;jl = J;j, sum over k implied.) This is very well known. Thus, in
elctrostatics, if the external “current” corresponds to a point charge at the origin, we may
think of ¢ as representing the electrostatic potential. The classical equation of motion
says that the laplacian acting on it is a delta function (the point charge). The solution is
Coulomb’s law, which is the “propagator” of the laplacian.

In sect. 2.2 we saw that the generating functional in this very simple, free case, is
given by

1

“WolJ] = 5 Tidy

Thus we get for the classical field, <I>Z-Cl’(0), in this free case

B0 = 2 (Wl = Ay,
i
We see that in that case there are no quantum corrections: The free fields are unable to
feel the effect of quantum fluctuations of one another. We represent the Feynman diagram
for the classical field as in fig.4.3. Similarly fig.4.4 represents several Feynman diagram for
the classical field (the one point connected Greens function in the presence of the external
current) for the case of a A\¢* theory.
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Figure 4.4: Several Feynman diagrams for the classical field in the A¢* theory.
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Figure 4.5: The formal expansion of the classical field, based on a classification of Feynman
diagrams. The shaded blobs with dots rather than legs are our pictorial representation
for the 1PI N-point functions.
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4.1.2 The One Particle Irreducible (1PI) Greens Functions

We now introduce a classification of all the Feynman diagrams for the classical field based
on 1PI N-point functions. The idea is given in fig.4.5. It may be described as follows:
starting at the point, x (or, i), at which we think of evaluating the classical field, we
will always find a propagator leaving that point. The simplest possibility is that the
propagator ends at the external current and gives us the standard classical free field.
However, there are many other possibilities. The next simplest thing to happen is that
we find the propagator ending in a fully 1PI diagram: the diagram cannot be separated
in two by cutting any one line at all (other than the external propagator starting at x).
The sum of all these possibilities define the 1PT irreducible one point function, I'; or I'(z).
Notice that our pictorial representation for that is a shaded blob with no legs coming out.
Instead of legs we just put black dots. It is sometimes referred to as the amputated Greens
function: legs have been removed.

The next possibility is that the first propagator ends in a diagram which is in fact
one particle re-ducible, but which has the property that the first part of it takes the form
of a 1PI piece with exactly two legs emanating from it. One leg is just our very first
propagator, the other one may hook on to any new Feynman diagram at all. The sum of
all these possibilities gives rise to the third graph in fig.4.5. It defines the two point 1PI
Greens function and it is built with the original one point connected Greens function (i.e.
the classical field) as a factor: It represents all the possibilities left over for the second
leg to end in. For reasons that will become clear in a little while, we reserve the name
I';; for a slightly modified version of the 1PI two point function. The final result may be
summarized in the expansion

1 1
O = Ay{J; — (T + 11,0 + §ijlq’kaq)la'“ + (n—1)!

Notice that we have introduced a normalization convention for each term based on some
combinatorics that turns out to be useful. Also the sign on the I'’s is conventional.

Finally we are able to introduce the definition of something which will almost, but
not quite, be the effective action. It is, however, exactly the generating functional for 1PI
Greens functions:

. 1 1
[ = ;0% + ini@fl@fl + gnjk@fl@fl@,? + ... (4.3)

so that
) 0 ~ixci
Filiz---in = 6@@ T §(I).ClF[(I) ]|<I>CIEO (4'4)

except for the two point function where we use the name II;; rather than I';;. Comparing
eqs.(4.2) and (4.3), we see that we have

6T

ow
- " sy
J

5T i = Ay (J;

(4.5)

or .
or
W + A;jlq)]cl = J;
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or
o ~ 1
This means that we feel very tempted to define
. 1
[[@° = T[@“ + 5@?%;].1@;‘1 (4.7)

and that is the object we call the effective action. One reason for the name is that
the effective action satisfies an equation very similar to the one satisfied by the classical
action. Indeed, we see that eq.(4.6) becomes

or

which is very similar to the classical equations of motion: 0 = 8S/d¢; — J;, or

0S5
0
From the way we have introduced it, it is clear that the effective action is (almost) the

generating functional of the 1Pl Greens functions. The only difference is with the two
point function. In fact we may write

Ji (4.9)

© 1
e =>% ﬁml...m@gl : --q>le (4.10)
N=1 .

and where from the above, the name I';; now is seen to mean exactly

It has become customary sometimes to refer loosely to I';; as the 2 particle 1PI Greens
function.

Notice, that for a given quantum field theory, the classical field is a unique functional
of the external current: given J, ®“! is in principle defined. When we talk about W/[J]
as the generating functional of connected Greens functions, we think of it as a functional
of this current. But when we talk about I'[®“!] as the generating functional of the 1PI
Greens functions, we think of it as a functional of ®“!. However, in principle we may
imagine that we may solve one in terms of the other as we please.

We now show that the following elegant path integral representation for the effective
action is true:

Theorem (effective action)

P N C P I / Dpe—So1+Jid (4.12)

Clearly this theorem is yet another reason for the name: effective action. Notice that in
the litterature, various conventions are given for which phase to choose for the J - ¢ term.
However, we should allways have the same phases on the left and the right in the formula
above.
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Proof of Theorem: The theorem is equivalent to the statement
WJ] =T[®“] — J - o

or that the effective action is the Legendre transform of the “Free energy” (as with the
thermodynamic potential in statistical mechanics):

T[@°Y = W[J] + J, @ (4.13)

This expression is correct because it implies that the effective action satisfies the correct
quantum version of the “equation of motion”. Indeed take a functional derivative with
respect to @' and obtain from the right hand side:

oW o0J 0J
57550 T ggar e ti= )
since SW
A (pC'l
6.J; k

Hence I' given by eq.(4.13) satisfies the crucial eq.(4.8). It follows that eq.(4.13) must
hold up to an additive contribution independent of J or ®°!. such contributions do not
interest us at present.

4.1.3 The Two Point Function

The 1PI two point function is II;;, not I';;. But so what is I';;7 We now show that
this Greens function nevertheless has a very nice interpretation: it is the inverse, full
(connected) propagator, or two point function. To show this, recall that the connected
one point function in the presence of the external current is

W]

GilT) = -2

= P;"[J]

so that the two point function in the presence of the external current becomes (our
notation here is for commuting, bosonic fields; for anti commuting, fermionic fields there
are a few extra minus signs which the reader can easily fix)

. 5 0 5!
Now use eq.(4.2) to obtain
5L 5L
§J; ! Rk 6.J;

where the remaining terms vanish when J = ®“' = 0. Thus
G = Ay — Aylly G,

or

(Gir + ADall) Gy = Ay
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Figure 4.6: Graphical representation of the the connected two point function in terms of
sums of graphs of higher and higher one particle reducibility

or
(Ank + k) ki = Omj

or, using eq.(4.11),
kG5 = Om (4.14)

This is what we set out to proove. Notice that we may write one of the above equations
as the following matrix equation

(14 AING" = A

or

G = (L+ AIl) 'A = (1 — AIl + ATAI — ATTATAI + ...)A

(the standard proof of the identity (1 —x)™! =142z + 2* + 2% + ... is easily seen to hold
equally well if z is an operator) or

ng - Aij - AilHlkAkj + AilHlk)Ak)mHmnAnj - ... (415)

This equation has the graphical representation shown in fig. 4.6. Both have an obvious
interpretation: The first term is the free field contribution. The next term is the sum
of all Feynman diagrams which are 1PI apart from the two external legs. Then comes
terms of higher and higher one particle reucibility. Apart from the signs we could have
written this expression down from the very beginning just by thinking in terms of such a
one particle reducibility classification.

4.1.4 The Classical Action as the Generating Functional of
Tree Diagrams

From the theorem, eq.(4.12) we see that in the classical limit when quantum fluctuations
in the path integral are unimportant so that the effective quantum average is the same
as the classical expression, the effective action is the same thing as the classical action.
We have also seen that the effective action is a generating functional of diagrams. We
now want to see that in the same sense, the classical action is the generating functional
of tree diagrams. Indeed it is important to realize that the tree diagram approximation
to quantum field theory is the same thing as the classical approzrimation. Actually that
statement should be clarified. Many of the successes of quantum electro dynmics and
other parts of the standard model are well approximated by tree diagrams. Does that
really mean that we merely do classical physics and not quantum physics? No! we do use
quantum theory heavily to interpret the result of our calculations in terms of quantum
amplitudes with all the standard mysteries of interference and probablility interpretations.
But realy, the tree diagram approximation does not teach us anything about the particular
quantum aspects of the field theory. For that we have to go to loop diagrams.
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Figure 4.7: Self consistency condition for the solution of the classical field equations for
A¢* theory.
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Figure 4.8: The classical field to first order in A generates the 1- and 4-point tree diagrams.

We now examine this role of the classical action in a simple example: A¢* theory. The
action is

A
Sl6] = 56:051 05+ 5 3 6!

and the sums on indices are really integrations over space time. So the equation of motion
in the presence of an external current, §5/d¢; = J;, becomes

_ A
Aijld)j + 5(/)? =J;

or \
¢i = AyJj — iﬁijfﬁ?

an equation which we may display pictorially as in fig.4.7. 'We may think of solving
this rather complicated classical equation in perturbation theory as a function of the self
coupling constant, A\. Trivially, for A = 0 we have the free field solution. A first order
approximation consists in introducing that (order A° solution) in the right hand side to
obtain the first order solution fig.4.8. More systematicall, we may replace any classical
field-“balloon” by the consistency equation. The first step gives fig. 4.9. This process may
evidently be continued, and we see how indeed all possible tree diagrams get generated
in the process.

4.2 The Dyson-Schwinger Equation

In the theory described by the action, S[¢] and extended by an external current, J for
each field component,

S[g] = Slgl —¢-J

the classical equations of motion take the form

05[9]
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Figure 4.9: The top “balloon” (classical field) in the last part of the figure representing
the equation of motion, has been replaced by the entire equation.

Ehrenfest’s theorem states that these equations hold “on the average” in the quantum
theory. Let us derive this result from the path integral. It gives us essentially what is
usually called the Dyson-Schwinger equations.

To se the point consider first a simple one-dimensional function, f(x), with the deriva-
tive integrable and f(4o00) = 0. Hence we have

+oo J d 0
[ . x@f (x) =
Similarly, for an arbitrary field component at any point, ¢; we get

_ O —Sgl+T6
0= /Dqﬁ&bie (4.17)

carrying out the differentiation we get

0 = / (-2 ye-siso

00;
_6?@[3(/)] \p=s/00 + Ji} Z[J] (4.18)

clearly the first line is precisely the expression of Ehrenfest’s theorem, whereas the second

line will be our first version of the Dyson-Schwinger equation. To get that we used that

the expectaion value of any function at all of the field may be obtained as usual by hitting

the generating functional with that very function where ¢ has been replaced by §/§.J.
Historically the equation was not obtained using this very fast path integral derivation.

Dyson obtained it by analysing Feynman diagrams. Indeed the equation has a simple

diagrammatic interpretation. That however differs in detail from one theory to the other.
Let us separate out a free part of the action and write quite generally,

{

SI0] = 50 566576, + Silo
ij
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so that 55 (b] 55,10)

I
6¢z zj: Al] d)] 6¢z
and 558 5[0
1o
Sapy = Bl
This allows us to obtain the Dyson-Schwinger equation in the following form
) dS7]
6—JZZ[J] =Y ApdiZlT Z Ay 5;¢ |s=s/50 Z]J] (4.19)

It is difficult to proceed in a simple way without considering an example.
Hence, consider
g3 g4
3 > ¢+ T ; (4.20)

QCD will be a slight generalization of this: there we shall meet triple-gluon and quadruple-
gluon couplings. In this theory we find

48
ool B Ly
Thus the Dyson-Schwinger equation becomes
5 52 g O
5—JZZ[J] = Xi:AMJiZ ZAZZ 2, 5T + gm}zm (4.21)

(sum over 7 implied). We may easily convert that to an identity between Greens functions.
Indeed let us (i) put [ =iy, (ii) then take functional derivatives on both sides with respect
to J; J;,, and (iii) finally put J = 0 to obtain

12y " " Ty din

2 2 2
Gg?z)zln = Allezgm “in + Aiﬂstgm “in ++ AilznG .

1213 ln 1

- Z Am{g?’ Gl + g4G s (4.22)

10002 lp,

This version of the Dyson-Schwinger equation has a very obvious diagrammatic interpre-
tation shown in fig.4.10. It works as follows: Working from a particular line, say the one
ending at i1, we may follow that line, and one of several things may happen: (i) we may
find that the line continues without ever meeting any vertex and finally ends in one of the
remaining exterior points, is, - - -, i,; (ii) it may happen that following the line we do find
a vertex, and that the first vertex we meet is a ¢* vertex; (iii) finally it may happen that
following the line, the first vertex we meet is a ¢* vertex. We see how the point, labelled
i, in the equation corresponds to the vertex being integrated over in the diagrams. The
minus sign in the equation is part of the Feynman rules, whereas we have put explicitly
the combinatoric factors from the equation.

One useful application of the Dyson-Schwinger equation consists in using it as a tool
for deriving the combinatorial weight factor in Feynman diagrams. Indeed, the entire
perturbation expansion may conveniently be generated by iterating again and again the
Dyson-Schwinger equation. When several loops are involved, this can be considered the
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Figure 4.10: The diagrammatic version of the Dyson-Schwinger equation for a simple
combined ¢* and ¢* theory.

Figure 4.11: The Dyson-Schwinger equation for the two-point function (in a ¢* plus ¢*
theory).

.
o e =
1 . N + 1 o
+2!o—© —e + +2—!H¥—0

2!

Figure 4.12: The once iterated version of the DS equation for the two point function (in
the ¢3 plus ¢* theory).



4.0 O X IVIIVIE L IO AIND VWAL 11J1IN L1 L 1O 1UO

o —e = 6——@ = +

Figure 4.13: The two point function to order gjg;. The weight factor is 3.

most reliable and systematic way of calculating the weight factors. As an example consider
the DS equation for the two point function, fig. 4.11.

We then treat the top line in the last two graphs in fig. 4.11 using the DS equations
for the three-point and the four-point functions. The result is shown in fig. 4.12. Suppose
we are interested only in the order gJgi contribution. This we get from the first three
graphs in the last parenthesis (of which the first two are identical), and the result is given
in fig. 4.13. We see in particular that the weight factor is % a result already obtained
previously in sect. 2.6 using more primitive techniques.

It is probably clear that we can produce yet other versions of the Dyson-Schwinger
equation by using the generating functionals for connected diagrams or even 1PI diagrams.
Since we know how these generating functionals are related to Z[J], this is in principle
straight forward even though the equations can become quite complicated. We shall not
pursue this further here.

4.3 Symmetries and Ward Identities

4.3.1 Symmetry in classical mechanics

Consider a classical, mechanical system with a finite number of degrees of freedom, {¢;},
and described by the lagrangian

L(qi, Gi)
so that the classical equations of motion, the Euler-Lagrange equations, are
pi = gi (4.23)
where the conjugate momentum, p; is defined by
_ 0L
pi = 3—(],

Next suppose the lagrangian has an invariance or a symmetry. As an example, consider a
non-relativistic point particle (with mass m = 1) moving in a plane in a potential centered
at the origin and being rotationally invariant. In this case we have two degrees of freedom,
(q1,92) = (z,y), and the potential, V' (|g|) is a function only of the norm, |q|* = ¢? + ¢2.
The lagrangian is
. 1. .
L(gi, i) = 547 + d5) = V(la])
It is evidently invariant under a rotation by an angle, e:

q1 — @1 COS€E-+ @gysine
¢ — —qsine+gacose (4.24)
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For € infinitesimal this becomes

01 = @€

S0 = —que (4.25)
The invariance of the lagrangian is made manifest by going to polar coordinates

g = rcosf

¢ = rsinf (4.26)
in which 1

L(r,0,7,0) = S+ r20%) — V(r)
is manifestly independent of 6: # is a cyclic variable.
Evidently, whenever we have an invariance, we may always find such a cyclic variable

(or several). If ¢; is cyclic, it follows from the equations of motion, eq.(4.23), that the
conjugate momentum is conserved:

pi=0
In our simple example, # is cyclic:
oL 0
o0
and oL
Y

is the angular momentum perpendicular to the plane of the motion. We know it is
conserved.

The purpose of this section is to see how this fundamental relation between symmetries
and conserved quantities appear, first in classical field theory in the form of the Nother
Theorem, and then in quantum field theory in the form of Ward identities.

4.3.2 Nother’s Theorem

As an example of an invariance in field theory, consider a bosonic field theory depending
on N scalar fields, ¢*, i = 1,2,---, N. Consider the (euclidean) lagrangian density

L = Lo+ L;
Ly = 5(3u¢lau¢l+m2¢z¢l)
Ly = V(¢l), |o]>=¢'¢’ (4.27)

where sums over ¢ (and of course over the (euclidean) Lorentz index, p) is implied. This
lagrangian density is clearly invariant under the following group of transformations: Let
A;; be an orthogonal N x N matrix, in other words,

A € O(N)

where O(N) is the standard name for the group of orthogonal N-dimensional transfor-
mations. Consider the transformation on the fileds

o'(x) — (¢'(z)) = ZAijqﬁj(:c) (4.28)
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It is clear that the lagrangian density is invariant under this transformation. Indeed, if u’
and v’ are N-dimensional vectors, then the scalar product

u-v = u'
is invariant under an orthogonal transformation (we do not attach any special meaning
here to whether indices are upstairs or downstairs).

The invariance just considered here is called a global invariance, since the transforma-
tion matrix, A;; is independent of the space-time point, z. For a local transformation,
A;j(z), the lagrangian would not be invariant because of the derivatives. (One can extend
the theory to include a gauge-field so that there actually is a local gauge-invariance. We
do not consider this now).

It is convenient to consider the infinitesimal tranformation performed by an orthogonal
matrix, A, which is close to the identity, here the N x N unit matrix, I. Then we may

write
Az‘j = (5ij + iOéij (429)

where «;; is an infinitesimal matrix. It is easily verified that orthogonality of A:
Z Aij Ay = 0
J
is equivalent to antisymmetry of a;;:
Qij = —

If A;; is real, then «;; is imaginary because of the 7 we have put. The reason is just that
then also «j; is hermitean, which is sometimes convenient.
Let us consider the set of all N x N antisymmetric matrices. They clearly form a
1

vector space, and one may count that there are $(N? — N) = N(N — 1) independent

ones: the dimension of the vector space of antisymmetric matrices is this large. Let

T

K

1 ..
a:1,2,---,§N(N—1), ihj=1,2,---,N
be a basis for them. Then any infinitesimal antisymmetric matrix, o;;, may be written

Ofij = Z EQT% (430)

where €*, a =1,2,---, %N(N — 1) are infinitesmial numbers.
We may summarize what we have found by saying that the lagrangian density we
consider is invariant under the global infinitesimal transformation

5¢i(3«") = iZOéij¢j($) = ZZ € ZTZZW(@ (4.31)

The antisymmetric N x N matrices T are referred to as the generators of the Lie-algebra
for O(N).

We now leave the example an abstract the idea. Thus we consider any lagrangian
density

£(¢Za aﬂ¢l)
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depending on a set of fields, {¢#'}. And we assume that the lagrangian density is invariant

under the set of transformations of the form eq.(4.31), but we do not want to specify

in detail how many values the index, a, can assume or what Lie-algebra the generators

T® belong to. All we require is that the lagrangian density is invariant under this global

tranformation, whether or not the fields ¢'(x) satisfy the classical equations of motion.
Under a general field variation, the lagrangian density is changed into

o oc
= @ e
oc oc i

= Gow  amean t ™

oL

R TERIES)

58Mgz$i(x)

+ 3¢ ()] (4.32)

where we used as usual that

60,¢'(r) = 0,0¢" (x)
The above expression for the variation of the lagrangian density is completely general. We
have not used that the variations should be of the form eq.(4.31), we have not used the
equations of motion, we have not used any supposed invariance of the lagrangian density,
and we have not assumed anything about the boundary conditions of the variations. Now
we show how this general expression can be used in several quite different ways:

1. It may be used to derive the equations of motion. For this we assume the “arbi-
trary” variations, d¢'(x), “vanish at infinity” so that the last term in £, the “total
derivative term”, integrates to zero in the variation of the action, S.

2. Next, suppose, ¢'(x) in fact satisfies the equtions of motion, and take in that case
d¢'(x) not to be an arbitrary variation, but to be given by the symmetry transfor-
mation, eq.(4.31). Then the first bracket in eq.(4.32) vanishes by the equations of
motion, and we find

Classical . oL Y,
(5£)symmetry - Zau[%: 87@“(]52-(@)%]@5](33)]

= 1SS g T @)
~ 0 (4.33)

where the last zero occurs becaus of our basic assumtion that the lagrangian density
is invariant under the global transformation. This result may now be formulated as

Nother’s Theorem:

If a lagrangian density is invariant under the field transformations given by eq.(4.31),
then we define the Néther currents

oL ,
@) = Y T8 () (4:34)
)= 2 e
and when the classical equations of motion are satisfied the Nother current is con-
served:

() =0 (4.35)



4.0 O X IVIIVIE L IO AIND VWAL 11J1IN L1 L 1O 1UY

Corrollary
The Nother charges defined by

Q") = [ d'xjs(t,7) (4.36)

are independent of time, i.e. they are constants of the motion.
Proof:

Q (1) = [ dzduji(t, )

—- / 20,501, )
=0 (4.37)

In the second equality sign we used conservation of the current, and in the last one
we used Gauss’s theorem for currents “vanishng at infinity”.

3. This time we do not assume that ¢‘(z) satisfies the classical equations of motion,
but we do take d¢'(x) to be given by eq.(4.31) and we do assume the lagrangian
density is invariant under the transformation for any field configuration (not only
for the fields satisfying the classical equations of motion). From eq.(4.32) we then
find

| or oL
0=0L=1i %: aij{[aqsz‘(x) B a”a(auqﬁi(:c))

16 () + au[ﬁwm (4.38)

4. Finally consider the local version of the transformation eq.(4.31):
0¢'(x) = i) ay(n)¢! (z) =i e (x) 3 T5¢ (x) (4.39)
J a J

Now we cannot assume that 6L vanishes, but we still have eq.(4.32). The difference
is that now we also get a term involving 0,c;;. In fact we find

oL oL , oL :
oL = i ij —— — Oy |’ Ol m=———¢’
oL ,
Y 0,04 (2) | mm—— ¢’ 4.40
+ 7’%: Ha](x)[a(aﬂ¢l(x))¢ (J“)] ( )
Here the term proprtional to «;;(z) itself vanishes because of eq.(4.38) and we get
o5 = [doc
_ i 9L
= z/d x%:a“alj[a(au¢i(x))¢](x)]

= 0% [ d'ad,e (@) ()
= —iZ/d%e“(x)@”Z(@ (4.41)
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where we assumed in the last step that our arbitrary functions, e*(x) “vanish at
infinity”, and where we have introduced the Néther currents, eq.(4.34).

This formula is a general result. It is valid whether or not we evaluate it on fields
satisfying the classical equations of motion, so we shall use it in the next section
where we give the quantum treatment. If in particular we use it for the classical
fields, it represents another derivation of Nother’s Theorem: since 0.5 vahishes on
classical fileds, we deduce that J,j;(z) on the classical fields because €*(z) are
arbitrary functions.

From eq.(4.41) we find the following formula

i) = 50 = T o) (4.42)

Example
Consider a field theory with an O(2) symmetry, i.e. characterized by two field components,
¢1(z), Pp2(z). Often in that case one prefers to introduce complex combinations:

o) = %wl (2) +id(z) ¢ (x) = %wn (2) — ih(a)

in terms of which the free part of the lagrangian becomes
Lo = au¢*au¢ + m2¢*¢

An infinitesimal roataion of the 2-vector (¢1,¢2) by an angle € becomes a phase rotation on ¢
and the opposite phase roatation on ¢*:

0p = ied
5t = —ieg* (4.43)

Referring to the general formula, eq.(4.34), we still have two fields and we have one value of a
with T% = +4 for ¢ and T* = —i for ¢*. Also

oL

0(0ud) Oud”
5L
oy
(4.44)
So finally:
Ju(x) = i(0u¢" (7)d(z) — Ouep(w) ™ (2)) (4.45)

This current has an important physical significance: it is the electromagnetic current to which
the electromagnetic field couples as a result of U(1) gauge invariance.

4.3.3 Ward identities

Conservation of the Nother current (and existence of the conserved Nother charges) de-
pended on the equations of motion being satisfied. However, in the path integral we
integrate over all fields most of which do not satisfy the classical equations of motion. So
do we have an analogous result? Well we may expect in fact that the ezpectation value
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of the Nother current is conserved, since we have seen under our discussion of the Dyson-
Schwinger equations that the classical equations of motion do hold as quantum averages.
Also, invariance of the lagrangian density under the symmetry transformation does not
require the classical equations of motion so it looks like we are in buissness. In fact, we
shall derive N6ther’s Theorem for a quantum average, but we shall emphasize one more
important point which has to be fullfilled.

Let

Faf = $) -+
@' (x) + i (z) ¢’ (x) (4.46)

represent a [ocal change of variable in the path integral. It is evident that we have
[ P@ye s = [ Dg)e 510

since the result cannot depend on the name of the integration variable.

We now make the crucial assumption that the Jacobian to change variable from D(¢")’
to D(¢*) is 1. This assumption is nontrivial since we are dealing with complicated func-
tional integrals the meaning of which should really be carefully examined as a result of
introducing a cut-off and then considering some limiting procedure. In some cases, one
can proove that indeed the Jacobian really is 1. But in other cases this is not true and
one runs into the phenomenon of quantum anomalies. These occur in other words, when
it looks like the theory has an invariance because the action has that invariance, but when
it turns out that the path integral measure does not have that invariance. In this chapter,
however, we shall not discuss anomalies, so we proceed assuming we are dealing with a
situation where the integration measure is also invariant:

D(¢) = D'
We then find
0 = / DifeS1¥) _ =5I9))
= [Dgoesii—— [ Dd)i(SS[qﬁ]e_SM
— / 'zt (x / Dele=5, 50 () (4.47)

From this it follows that
/ Dele=5919,,j%(x) = 0 (4.48)

or indeed that the Nother current is conserved in the sense of a quantum average.

We may consider something a little more general, namely an arbitrary quantum field
theoretic “correlator”, an amplitude which is the quantum expectation value of some
operators. Let us denote this operator generically as A({¢'}) and write for the change
under a local symmetry transformation:

Aoy = [0y
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Then in a completely analogous way we find

0 = [Déise WA}

. SA({¢f
= / d'ze(z) / Dqﬁ’esm{auj“(x)—i%} (4.49)
This may also be written
. i SA(
/ Die=S99, j(z) = i / Dqﬁ’e‘s[@% (4.50)

which is a common way of expressing the Ward identity.
Ward identities may appear in many other forms. Let us just give one example. Using
a generating functional with a “current term”,

/d4xJi(x)¢)i(x) =J ¢

(where the external current should not be confused with the Nother current), we may
apply the same idea and write

S
— D 7 —S+J-¢
0=/ P e

- if W"{—aﬁfx)ﬂ?«ﬁj(w + ST/ (2)he S+
e -
= il 3¢ (z) LSJ] + Ji( )}5Jj(x) Z|J) (4.51)

Here we used that the quantum expectation value of any function of the ¢*’s may be ob-
tained as usual by hitting the generating functional by the same funciton of the derivatives
after the external currents.

By further taking functional derivatives after the current, and finally putting the
current equal to zero, we generate an infinity of Ward identities between Green functions.

Ward identities play a fundamental role in discussions of symmetry in quantum field
theory, in connection with discussions of spontaneous symmetry breaking, in connection
with proofs of keeping gauge invariance during renormalization etc.



Chapter 5

Regularization and Renormalization

5.1 Feynman diagrams in momentum space

We have already seen how the diagrammatic structure of perturbation theory leads to the
evaluation of momentum integral when we want to calculate connected Green functions.

Let us recall the rules (section 2.7 in Bosonic Field Theory) for the connected mo-
mentum space Green functions for a scalar theory with the following lagrangian (in d-
dimensional Euclidean space):

£=100r+ b 3 g 5.1
= 30"+ gm*e* + 3 Tho (1)

For a given connected diagram consisting of E external lines, I internal lines and V'
vertices we should associate

(A): to each external line 7 an external momentum p; and a propagator

1

—_— 5.2
pi+m?’ 2

(B): to each internal line j an internal momentum ¢; and a propagator

1
- 5.3
q; +m?’ (53)
(C): to each vertex v, of order n a factor
- )‘n(QW)d 5d(z EPi + Z Ejvl;) (5.4)
130 jov

where the sign convention is that ¢;, = 1 if the momentum arrow of line j points

away from vertex v and €5, = —1 if it point towards vertex v.
The diagram D will give a contribution Gp(p1, . .., pg) to the connected Green function
Gc(p1, - - ., pr) which can be written as

2 1

GD(p1, . ,pE) = Wp 1:[(_)‘%) H

3 2
i—1 Py tm

- Fp(pr,---,0E) (5.5)

113
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P

pk+]

Figure 5.1: Splitting of a diagram in 1PI components

where wp is a statistical weight factor (see section 2.7 of Bosonic Field Theory), ny denotes
the order of vertex v, A,, the corresponding coupling constant. Fp is given by

I 1 v
2 + m2 1_[1 271' d6 (Z EiwDi + Z 51}](]]) (56)
] v

190V YEU

FD(pla---apE

We will now introduce the concept of a one-particle irreducible (1PI) diagram . It
is a diagram which cannot be separated in two disconnected parts by cutting a single
line. Such diagrams are the natural objects to analyze since the integral (5.6) splits in
independent integrals for each 1PI component, the reason being that lines separating the
1PI components by momentum conservation at each vertex can be expressed entirely in
terms of the external momenta. This is illustrated in fig.1.

The connected Green functions in Fourier space are then trivially built from the gen-
eral diagrammatic rules considered earlier by taking products of propagators and the
contributions from the 1PI diagrams. These we will denote Ip(ps,...,pg) and we will
further extract the allover momentum conservation

jD(pla---apE‘) = (2m)¢ 5(d)(p1+"'+pE) In(p1,-..,pE) (5.7)
v

= (2m) 45 coili + Y &y 5.8

/H 27r q]+m2)q,1_[1 (; P ; JQJ) ( )

As was shown in detail in chapter 4, it is often convenient to use instead of the connected
Green functions G¢ the 1PI Green functions T' and T, the only difference between I'
and ' being a -function for allover momentum conservation. The 1PI Green function I"
will be the sum of I'p’s from the various diagrams D and each of the diagrams gives a
contribution which can be written much like (5.5):

FD(pl,...,pE _'U}DH (pl;---;pE) (59)

In the next sections we shall mainly be discussing the integral Ip(ps, ..., pr) since we will
try to understand the structure of the divergences which are present when we perform
the momentum integrals. Only after that we will turn to renormalization of the theory
(and try to get rid of the divergences in a systematic way) and then the natural objects
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to consider will be the full 1PT Green functions I'(py,...,pr) and their diagrammatic
expansion in terms of I'p(py, ..., pgr).

We now have to perform the momentum integration for the integral Ip. V of these can
be performed by elimination of the d-functions. As already remarked in chapter 2 this
leave us with L integration variables, where L is

L=I-V+1. (5.10)

The 717 in (5.10) is the total momentum conservation factored out in (5.7). Only V-1
of the d-functions reduce the number of ¢; integrations. L can be viewed as the number
of independent loops in the diagram. Let us for a general 1PI graph denote by ¢, «

1,..., L aset of internal integration momenta which survives the elimination of §-functions
n (5.7). The ¢;’s will then be linear combinations of the ¢,’s and the external momenta

Di:
L B
% =Y Cja Qo+ Y Cji Pi (5.11)
a=1 i=1

To find the relation (5.11) one has to eliminate the §-functions explicitly for each graph. It
is possible to develop a general formalism based on notation from electric current theory
(¢;’s are the currents), but it is not necessary for the lowest order graphs we consider
here. With this notation Ip can be written as follows

L dd I 1
ID(pl;---pE; / (5-12)

(2m)d il q; + m?
where it is understood that ¢; = ¢;(pi, ¢o) according to (5.11).

We can now finally address the question of convergence of the integral (5.12). It
follows immediately from the form of the integral that if the integral is convergent it is a
homogeneous function of degree w(D) in p; and m:

Ip(tps;tm) = t°P) I (p;, m) (5.13)
w(D) = dL—2I. (5.14)

w(D) is called the superficial degree of divergence of the diagram D.
Theorem 1: w(D) < 0 is necessary for convergence of Ip.

Proof:

From the inequality between arithmetic and geometric means we have

I

I I
[[(g +m?) < <Z(Qi2 +m2)>

i=1 i=1

We now use the representation (5.11). If ¢, is sufficiently large (say > A(p;, m) where A
might depend on m and p;) we have:

T
> (@ +m?) =% [(Zwaqu%pj)”m?
1 o j

=1 =

L
<CY ¢
a=1
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Figure 5.2: w(D) = —6, however w(Dg) = 0.

where C' is some new constant. This leads to the following estimate:

>i/ ﬁ ddqa 1 >l/ rdL=1qp
ClIy, esne =5 Cm) (Sho @)~ Cllisa 1!

=1 a=1

Ip

where again C is some constant. This completes the proof.

It should be clear that the above consideration is nothing but simple power counting.
In general w(D) < 0 is not sufficient for convergence. Subdiagrams ”Dgs” can have
w(Dg) > 0 and they will lead to divergence of Ip. This follows heuristically by keeping
the momenta coming from the rest of the integration fixed and doing the subdiagram
integration first. The situation is illustrated in fig.2. If we consider the situation in four
dimensions (d = 4) we have:

LD:3, ID:9, w(D):dLD—2ID:—6
However, the shown subdiagram has

LDSZ]-; ID :2, w(DS):dLDS—2[DS:0

S

and is logarithmic divergent.

Definition: By a 1PI subdiagram Dg of D we understand a set of vertices and all lines
joining them, such that Dg makes up an 1PI diagram.

Some of the internal lines in D can play the role as external lines for Dg as illustrated
in fig.2 where Dg consists of two vertices and the four lines joining them. Two of these
lines are external for Dg. Let F(D) denote the set of all 1PI subdiagrams of D (notice
that D € F(D)).

Theorem 2: w(Ds) < 0 VDg € F(D) < Ip(p1,...,pr) is an absolute convergent
integral.

The proof will not be given here. The following should be noted: The ”=-" part of the
theorem is true for any field theory. However, if we have spin 1/2 and spin 1 particles,
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Figure 5.3: ny =4, no =4, n3 =3, ngy = 5.

w(D) < 0 is not necessary for convergence because the propagators are no longer positive
definite functions. There might be cancellation between different terms in the numerators
of these propagators.

5.2 Definition of renormalizable theories

We want to express w(D) in a more transparent way. Let n, denote the order of a vertex
in a diagram D (see Fig. 3 for an example).

Since each internal line connects to two vertices and each external line to one vertex
we have for any diagram:

v
2[4+ E=> n, (5.15)
v=1
If we combine this with the relation (5.10): L=1—V + 1 we get

-2 V.o d—2

v=1

Let us define w, as:
wy = (d —2)n,/2 (5.17)

The interpretation of w, is as follows: If a vertex of order n, appears in the diagram D
we must have a term A, ¢™ in the lagrangian:

1 1 A
L() = 5(08)" + 5m*¢* + -+ 2™ + ... (5.18)

As S = [dizL(¢) is dimensionless (if i = 1) the canonical dimension of ¢ is (from the
kinetic term)

(0] = (d - 2)/2 (5.19)

and we have

("] =(d—2)n,/2 =w,; [An,] =d—wy (5.20)
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and w(D) can now be written as:

w(D) = d-— %EJF ;(wv —d)
— - %E S (5.21)

It is natural to classify the 1PI diagrams corresponding to a certain lagrangian accord-
ing to the number of external lines, since these are precisely what associate them with the
connected Green functions. In order to limit the classes of D where w(D) > 0 we must
have

wy, <d or [A]>0] (5.22)

If not, we can make arbitrary complicated diagrams with a given number of external lines
E, but where —>_,[A,] and therefore w(D) is large positive.
This leads to the following classification of scalar field theories:

(A): Non-renormalizable theories: Contain at least one coupling constant with [A,] < 0.
To all Green functions are associated superficially divergent diagrams.

(B): Renormalizable theories: Some [A,] = 0, the rest have [A,] > 0. Only a finite number
of 1PT Green functions have superficially divergent diagrams (But the diagrams
themselves can be arbitrary complicated).

(C): Super-renormalizable theories: All [A,] > 0. The superficial divergence of diagrams
corresponding to a given class of 1PI diagrams (i.e E fixed) decreases with the
number of vertices. Only a finite number of diagrams are superficially divergent.

The definition extends in a trivial way to theories which involve also spinor fields and
vector fields. We leave the generalization as an exercise for the ambitious reader.

We shall see that it is possible to make sense of the renormalizable and super-
renormalizable theories, even if there are infinities in the perturbation expansion. The
infinities can in these cases be absorbed in a redefinition of the various coupling constants,
as we shall discuss later. The important point is that only a finite number of Green func-
tions have superficial divergences in these two cases, and the redefinition of the coupling
constants will be sufficient to remove in a systematic way all divergences from the Green
functions. If the theory is non-renormalizable there will superficial divergences associated
with Green functions with an arbitrary number of external lines, and a redefinition of ex-
isting coupling constants in the lagrangian will not be sufficient to remove the divergences.
If one should remove the superficial divergence of a n-point function one would have to
introduce a new coupling constant and the corresponding new interaction \,¢"/n! in the
lagrangian (the details of this will be clear later). In this way one ends up with arbitrary
polynomial interactions and the original theory is modified in a drastic and ill defined
manner. [t should be emphasized that this inability to make sense of non-renormalizable
theories is linked to the perturbative expansion. In principle one could imagine the possi-
bility of defining non-renormalizable theories in a non-perturbative way. We will discuss
this later, and only note here that at present no interesting non-renormalizable theories
have yet been defined.
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Figure 5.4: A tadpole diagram.

Example 1: Classification of renormalizable scalar field theories.

We are interested in finding the highest power N of ¢ which makes the lagrangian

1 1 Yo,
L(}) = 5(0up)® + 5m® ¢* + > ¢ (5.23)
2 2 = n!
renormalizable, as a function of the dimension d of space-time. From (5.20) we have
2d

All n are allowed: All polynomial interactions are (super-) renormalizable. One can
even define renormalizable non-polynomial interactions.

n < 6. ¢3, ¢, ¢° are super-renormalizable and ¢ is renormalizable.

n < 4. ¢, ¢* are allowed. ¢ is super-renormalizable and ¢* is renormalizable.

n < 3. Only ¢? interactions are allowed. The interaction is super-renormalizable.
n < 3. The ¢? interaction is renormalizable.

No interactions are allowed. Only a gaussian, i.e. a free field theory satisfies (5.24).

From the example it follows that only for d < 4 can we have renormalizable (or super
renormalizable) scalar theories which have a chance of being non trivial for d < 4. From
the point of view of perturbation theory ¢ is renormalizable in d = 6 and we will some-
times use it for the purpose of illustration. However, clearly a ¢* theory alone makes non
sense in the functional integral, since ¢? is not bounded from below.

Example 2: Superficially divergent 1PI diagrams in a ¢ theory.

d=2:

From (5.20) and (5.21) we have:
wy =0, [M]=2, w(D)=2-2V

and only for V = 1 will we have a superficially divergent diagram (w(D) > 0) as
shown in the fig. 4 (a tadpole diagram) Of course there will be many other diagrams
where the tadpole diagram appears as a subdiagram as illustrated in fig.5 These
diagrams are divergent, but have no superficial divergence, and once the divergence
is removed from the tadpole diagram they will be convergent.

: From (5.20) and (5.21) we have:

u)v:2, [)\4]:1
14
wD)=3-E/2-) =3-V -E/2
v=1

This leave us with only two 1PI superficial divergent diagrams corresponding to
V=1FE=2and V =2,F =2 as shown in fig.6.



12U nEGULARILZALIUIN AIND IINURLVIA LLIAA L TUIN

Figure 5.5: A diagram with a tadpole subdiagram.

Figure 5.6: The divergent ¢* diagrams in d = 3.

d=4: From (5.20) and (5.21) we have:
wy=4, [M]=0, w(D)=4-E.

The four-dimensional theory is renormalizable, but not super renormalizable as the
above examples in d = 2,3. This means that infinite many 1PI diagrams are super-
ficially divergent, in fact this divergence only depends on E. This is shown in fig.7
where a ”blob” symbolizes an arbitrary complicated 1PI graph. Only diagrams with
E =2 and E =4 can occur.

5.3 Regularization

As seen in the last sections we will in general encounter divergent integrals in our pertur-
bative expansions. The volume of the momentum space is in a certain sense too large.
The integrands (i.e. the product of propagators) are falling off at infinity, but too slowly
to ensure convergence of the integrals. The philosophy for dealing with these divergences
is as follows:

9 =

> oE

Figure 5.7: The structure of superficially divergent ¢* diagrams in d = 4.
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(A) : Regularize the divergent integrals in some way, that is: Introduce some kind of
cut off A which makes them finite. This allows us to calculate the integrals in a
meaningful way even if w(D) > 0, but in general our answer will now depend on A.

(B) : Show that the parts of the integrals that are divergent when the cut off is removed
again can be absorbed in a redefinition of the coupling constants of the lagrangian.

In this section we discuss point (A), in the next we turn to point (B). The most naive
choice of regularization is simply to introduce an upper integration limit: |¢| < A in all
momentum integrals. This is more or less equivalent to putting the system on a lattice
since it cuts off more or less any distance x < 1/A, and like a lattice approach the cut-off
breaks explicitly euclidean invariance. We will discuss the lattice regularization in detail
later, and here concentrate on regularizations which preserve euclidean invariance. Such
regularizations are needed if we want to perform perturbation expansions ”by hand”,
simply because the calculations otherwise become too cumbersome. However, it should
be stressed that in principle any ”sensible” regularization should be allowed. The usual
way to regularize the integrals, while keeping euclidean invariance, is by modifying the
momentum propagator by hand:

1 1
_
q2_|_m2 q2+m2+q4/A2
1 1 1 A2 —m?

o _ _ 5.26
q2_|_m2 q2+m2 q2+A2 (q2+m2)(q2+A2) ( )

(5.25)

The first modified propagator corresponds to the introduction of higher derivative terms
like (0%¢)?/A* in the Lagrangian, while the second modified propagator corresponds to
subtracting the corresponding propagation of a heavy particle. Note that both modifica-
tions of the action only affect the gaussian part. They both lead to euclidean invariant
theories where the propagators are better behaved as ¢ — oo. Of course the propagators
can be made arbitrary convergent as |¢| — oo if wanted, by for instance:

1 1 SN Ci(A,
— _ X Gl m) (Pauli Villars regularization) (5.27)
¢ +m? ¢+ m? q* + A2

where the constants C; are adjusted such that the behaviour of the propagator for large
lq| will be as A2 /¢?N+2. We should stress that the modification of the propagators serve
the same purpose as the explicit cut-off |¢| < A, in the sense that it limits the ”volume”
of momentum space from where we get the important contributions to our integrals. It
is just a somewhat ”"smoother” cut-off than |¢| < A.

However, we might want the regularization to respect more than just the euclidean
invariance. In some situations it will be highly desirable if internal symmetries of the
lagrangian are compatible with the regularization procedure since that might limit the
possible divergences which appear when performing the momentum integration. Internal
symmetries will be discussed in detail later, but let us mention that the symmetry we have
in mind is local (non-abelian) gauge symmetry. If we want to preserve both euclidean
invariance and non-abelian internal symmetries, not many regularizations are available.
In fact essentially only one: dimensional reqularization. As this method is actually quite
convenient for higher order calculations too, we will describe it here although it is not so
intuitive as the momentum or lattice cut off.
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The important observations are simply:

(A) : w(D) decreases with dimension d (convergence improves when going to lower
dimensions.

(B) : The integrals 'p(py, . .., pn) can be expressed as analytic functions of d away from
the integer dimensions d > 1.

In a certain way one can say that the idea of dimensional regularization is the same as
for the other cut-off’s: to reduce the volume of momentum space. Intuitively the decrease
of volume with dimension is clear and it increases the convergence of certain type of
integrals if we decrease dimensions. The one-dimensional integral

/ dq1
qi +m’

is convergent while the corresponding two dimensional integral

/ dq:dqs
qi + g3 +m?

is divergent, as are all higher dimensional integrals of the same kind. Of course it de-
pends on the kind of functions f(q) we want to integrate, whether the convergence will
improve with decreasing dimension d, since f(q) in general will have some dependence of
d. However, it is typically rational functions in scalar product of integration momenta and
external momenta we want to integrate. They have a natural extension to any positive
integer dimension without changing their fall off at infinity as the above example illus-
trates, while on the other hand the measure of integration will change (and ”improve”)
for lower dimensions since
dq ~ |q|"""d|q]

We introduce the method by a few examples.
Example 3: The I'-function
The I' function can be defined by the following integral representation
o
'(z) :/ doa”te™® (5.28)
0

and we have when z is a positive integer: I'(z) = (z — 1)!. The integral representation
(5.28) obviously defines an analytic function I'(z) in the half plane Re z > 0. By partial
integration it is possible to set

I(z) = 1/ da o® e @ (5.29)
Z.Jo

thereby extending the definition to Re z > —1 and proving the functional relation 2I'(z) =
['(z + 1) also in this region. (5.29) also shows that I'(z) has a simple pole at z = 0. This
procedure can now be repeated, and the result is that I'(z) can be defined in the whole
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complex plane except at z = —n,n = 0,1, ... where it has simple poles. The pole structure
can be analyzed further by introducing the digamma function (z)
1 dI(z)

P(2)

Yn+1) = 1+
2 n
, m 1
Plntl) = = Z: 2
k=1
where v = 0.57721 - - - denotes Eulers constant. Near z = —n we have the expansion:

(=" |1 1 m? 2 ! 2
L(—n+e) = o g+z/)(n+1)+§6[?+z/) (n+1)=¢'(n+1)]+0(")| (5.30)

Example 4: The tadpole diagram
q

d’q 1
e e

The integral is convergent for d = 1. Formally we can calculate it in any d as follows:

b [7 g eotarm?) (5.32)
@ +m? o '
We note that for positive integer d we have

/ A o _ (g2 (5.33)
(2m)d ' '
and we promote this relation to be valid for all complex d. In fact it follows from general
theorems that an analytic function coinciding with (5.33) for positive integer d is unique
if we require it to grow slower that a certain exponential function in the complex plan.

By using the definition of the I' function given in the previous example and making
formal interchange of integrations (valid in d = 1 where I is well defined) we get

ddq 1 ddq 2,02 2 ddq 2
= —a(g®+m?) — —am —aq
/(%)d 7+ m? /(zﬂ)d/do‘ ‘ /do‘ ‘ /(m)d ‘

T(1 — d/2)(m?)%/?1
(4r)/2

= /da e —om’ ofd/?/(élﬂ)d/2 =

Differentiation after m? we get

/ (ddq L _Tn-d/3) <m2>d/2_n (5.34)

2m)e (2 +m2)"  (4m)"DC(n) \4m

For a given (integer) d the integral in (5.34) will be divergent for n < d/2. We see that
the onset of divergence according to naive power counting is associated with a pole in the
[-function T'(n — d/2) in the dimensional reqularized integral.

Example 5: The self-energy diagram
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ptq

Figure 5.8: Momentum assignment for the self-energy diagram.

The diagram is shown in fig.8. According to the momentum assignment shown in the
figure we have the following integral

[ dig 1 1
Ite) = / 2m)d g2+ m?2 (q+p)%+m?2 (5.35)

We can now proceed as for the tadpole. If we denote the two quadratic forms in p and ¢
by Ay and Ay we have

1

A1 Az / davday e Smfma)

By a change in variables a1 = t(1 — ), g = ta where a € [0, 1] the double integral can

be written as
1
d dt te 7((1 Oc)Al +aA2 / d
/ 0‘/ T —@)A; + aly?

If we shift ¢ by ¢ = ¢ — ap we have

(1 —a)A; 4+ aly = ¢ 4 2aqp + ap® + m? = ¢ + [a(1 — a)p? + m?]

and our integral (5.35) can finally be written as

dd~ 1
/ da / (@ + (1 — a)p2 + m2))? (5.36)

The ¢ integral in (5.36) is precisely of the form (5.34) and we can use this result to write

r'2—-d/2)

I(p) - (47_‘_ d/2

/ do [a(1 — a)p? +m?|¥?2 (5.37)

We see again that the dimensional reqularized integral will have o pole of a T'-function
when d — 4, the lower critical dimension beyond which the integral (5.35) will be divergent
according to naive power counting.

Example 6: General one-loop integrals and Feynman parameters

A possible momentum assignment to the general one-loop diagram is shown in fig.9. The
integral corresponding to the Feynman diagram of fig.10 is:

d'qr 1 1 d'q -
I(pla---apn):/(2ﬂ_q)1d 2 :/ 3 H

2
=1 G tm i=1

AT (5.38)

We can now transform the ¢ integration to a a-parametric integral the same way as was
done in the last two examples. Again the purpose is to exhibit the d dependence more
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P, P,
91 _pl
92 =p1+p2
p,
9,1,1=P1+ <+ D,
P, +P,+4q
pn =p,+ -+ +0,=0

D;

Figure 5.9: Momentum assignment for a general one-loop diagram.

explicitly. The steps are the same: First we represent the product of propagators by the
exponential integral. In this way we get a sum of terms in the exponent. Next we perform
one of the parametric integrals by a change of variables &; = ta; where > «; = 1:

1
T — dév; —(G1 A1+ FanAy)
= - H die

o0
= /H da; 6(1 — Zai) / dt 7 Le—tenArtetanln)
i=1 0

[(n)

_ /i:Hldaz-5(1_Zai)(alA1+_”+%An)n

We use this in (5.38) to get

T N T'(n)
W) = [ T80 =300 [ o ooy

The ¢ integral is again of the form (5.34) since a simple shift ¢ = ¢ — Y a;p; will make the
denominator a function of ¢*:

n
Y ailg+pi)?+m® = @ +m?+ Flo,pi)
i—1

Flai,pi) = Y aip; — (O i)

The g-integral can now be performed and (5.38) can be written as the following parametric
integral:

I(pl,...,pn;m) = 47T 5/42 /Hdaz 1—2 Z)[mZ +F( ’pz)]d/Q n (539)

The «; parameters are called Feynman parameters.

For n > d/2 (5.38) is actually convergent and no analytic continuation is needed to get
(5.39) provided d is an positive integer. The special case of n = 2 of course agrees with
the self-energy calculation in the former example.



120 nEGULARILZALIUIN AIND IINURLVIA LLIAA L TUIN

5.4 One-loop renormalization

In the last section we saw that the divergences in the perturbation expansion in four
dimensions showed up as poles in the dimensional regularized integrals. Had we chosen
another regularization, like for instance the Pauli-Villars regularization, power-like di-
vergences would have appeared as powers of the cut-off A, while logarithmic divergences
would manifest themselves as terms of the form log(A/m). It is the purpose of this section
to show that the infinities one encounters to lowest order perturbation theory can be ab-
sorbed in a redefinition of the coupling constants. We will do this by considering explicitly
the lowest order perturbation for two renormalizable theories: ¢* in four dimensions and
¢? in six dimensions. The reason for also considering the somewhat artificial ¢>-theory in
six dimension is that the socalled wave function renormalization is absent in the lowest
order ¢*-theory in four dimensions.

Since we have already dealt with the general l-loop diagram in the last section we have
all the machinery needed. In both cases the superficial divergence w(D) of a 1PI diagram
D depends only on the number of external lines. We have

wD)=4—E (d=4), w(D)=6—-2E (d=6)

For ¢* the 2- and 4-point function are superficial divergent, while for ¢ and d = 6 the 2-
and the 3-point functions are superficially divergent.

In both cases the coupling constants have dimensions when we leave the dimension
where the theory is renormalizable: d = 4 for ¢* and d = 6 for ¢>. A coupling ~ \¢" in
d dimensions has the following mass dimension (recall (5.20))

N =d— (d—2)n/2 (5.40)

It is convenient to write A away from the critical dimension (where[A] = 0) as a dimen-
sionless coupling times a parameter 1 with the dimension of mass. We therefore introduce
the notation A for the coupling constant A\ away from the critical dimension and write

X = pd- @22

In the following we will be somewhat sloppy when we write expressions like A¢*. According
to the notation introduced we should only write this in d = 4, but sometimes we might
use it instead of the correct expression 5\¢)4, in order to avoid too cumbersome a notation.
We hope it will lead to no confusion.

We have now introduced a new mass parameter p in the theory. At the moment the
appearance of this mass parameter is mysterious, especially since one would not expect
any physical mass or scattering cross section to depend on it. The existence of such
a parameter might be less surprising by recalling that we could have used one of the
other regularization procedures where a cut-off A with dimension of mass is explicitly
introduced. Also in that case any physical observable better not depend on A even if
we have used A in some intermediate steps of the calculation. We will later describe in
detail what happens to the parameter p, let us only mention here that it will enter in the
so called renormalization group equations which describe scaling properties of the Green
functions. In this way the true reason for the appearance of this mass parameter can
be traced to necessity of breaking scale invariance when renormalizing relativistic field
theories.
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m” = 044 Q

o’ = i §+><>< +

Figure 5.10: The lowest order 1PI diagrams for a ¢* theory.

In the next two subsections we calculate the divergent 1-loop 1PI diagrams for ¢*- and
@>-theories.

5.4.1 ¢*in d=4

We introduce the notation
e=4—d A=pcA

and consider the lowest order perturbative corrections to the 1PI Green functions. As
explained above only the 2-point functions and the 4-point functions are superficially
divergent. By using either Wick’s theorem and the expansion of chapter 2 or the Dyson-
Schwinger equations of chapter 4 we get the one loop corrections illustrated in fig.10. If
we introduce the following notation for the momenta in T (py, py, ps, ps) :

A
\?/\/_/\( s = (p1 +p2)2, t=(m +p4)2, u = (p +p3)2

2 8

i

we get for the one-loop contribution:

ST (p) — _Arg 1) (4m2>% o

NT(2) (4mp? : Z .\ _e
ST (st ) = pf o2 | d 1+ ol — a)—)~
o) = o gt () [l T aa-n )

We can now expand to order ¢ = 4 —d as d — 4 using the pole structure of I'(z) described
in example 3:

A 1
ST (p) = e m? <g L F@ (mQ,u2,6)>
o) c N (3w
oY (s, t,u) = p (am)? g—i-F (s,t,u,m, i, €)
m
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Figure 5.11: The lowest order 1PI Green functions for a ¢* theory.

where the F' functions are given by:

FO(.) = —%m 47:;2 +%w(2)+0(5)
FO(.) = gz/)(l)—glnégbu /da > (1 +a(l - a)5) +O()

z=u,t,s

This separates the divergent pole structure to one-loop in ¢* for d = 4. We have kept a
factor 4¢ in front of I'¥ for dimensional reasons.

For completeness we note:

1 z, 5 1+4m2/z+1
/0daln(1+a(1—a)ﬁ)——2+\/1+4m /zIn (\/7M_1 (5.41)

The main part of the physics is actually to be found in this non-trivial momentum de-
pendence of the two-point function. We are however concentrating on the pole part, since
our goal is to understand renormalization.

5.4.2 ¢ in d=6
Like for the ¢* in d = 4 we introduce

= (6 —d)/2, A=\

I'® diagrams have w(D) = 2, I'® diagrams w(D) = 0, all other diagrams D have
w(D) < 0 and they are convergent at l-loop level for d = 6.

By use of the perturbative machinery of chapter 2 or 4 we get the 1-loop corrections
to the 2- and 3-point functions shown in fig.11! and we get from (5.34),(5.37) and (5.39)

or®(p) = N —1) <4w2>8m2 /1 da (1 +a(l—a) P’ )1_6

2(4m)3 m? m?

0T (py) = —pf A(Ir(;) (47m> /Hd% (1-Y ) <1+M>—E

m2

where F is defined in example 6.

'We have ignored tadpole diagrams for simplicity. They will contribute to the mass renormalization
in a trivial manner, which we leave to the reader to work out.
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We can expand in ¢ for d — 6:

A2 1 1
(SF(z)(p) e —2(47‘—)3 (g(mZ + 6p2) _|_ F(2)(p2,m2,u2,6)>
(3) . N 1 3/ 2 2 2
ol (pz) = —u 2(471’)3 (g + F (piam y [ 76)>

where F® and F®) are finite for ¢ — 0.

5.5 Counter terms

The lesson learned from these two calculations is that the infinities can be hidden away by
adding to L(¢) additional terms, so-called counter terms, since the pole terms have exactly
the same structure as the terms in the original lagrangian. The coefficients multiplying the
1/ terms are powers of the coupling constants times constants or m* and p* (p?, ~ —02 by
Fourier transformation) . All non-trivial momentum behaviour, which does not correspond
to any momentum dependence in the Lagrangian is not associated with the pole terms.
The same would have been true if we had used another regularization like Pauli-Villars,
only would the poles be replaced by powers and logarithms of the cut-off A.

If we add (for ¢*):

I N ST Y
Ler(9) = LGWQ g] M +u l167r2 g] m (5.42)

and thereby introduce two new vertices:

— A1,

1672 & m
Hl6r2 =

by definition we get a finite result to one-loop since these vertices will cancel the poles.
The diagrammatic expansion is shown in fig.12

In the same way we get for ¢® in d = 6: (note the different sign compared to ¢*. We will
return to the significance of this later)

Ler(d) =~ l#{;)?’ ﬂ %(a,@)? - l2(272r)3 ﬂ %mQQﬁQ o l2(ijr)3 2%] ﬁ_?

If we write (lets take the ¢?-theory as an ex. and recall that A = ) ):
1 A
L= (002 +5m ¢*+ E0g (5.43)

1 1 A
Ect = C §(au¢)2 + B §m2¢2 + A lg—’¢3 (544)
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@ _D%HQ +

inite

m. = 8 EZ>Q< : >z<

Figure 5.12: The one loop expansion for ¢*. The rhs will be finite since the counter terms
cancel the poles in the loop diagrams.

we can write:

L) = L(¢)+ Ler(9) (5.45)
A
= SO+ B+ D (5.46)
where:
¢ = VI+Co=2"¢ (5.47)
mg = m’(1+B)/Z (5.48)
N o= wA(1+A)/Z57 (5.49)

where the last relation is valid for a ¢™-theory. ¢g, mg and Ay are called bare fields,
bare masses and bare coupling constants. L£7°" is called the renormalized Lagrangian, an
unfortunate notation since its coefficients are infinite as ¢ — 0. The bare quantities all
diverge as ¢ — 0 while the renormalized quantities A\, m are finite in this limit: They can
be identified with some physical parameters of the theory.

It is convenient for later use to write explicitly the relations between the bare quantities
and the renormalized ones (A and m). To one-loop we found:

N = i <A+a1£)\)> (5.50)
m2 = m? <1+b1;)> (5.51)
Zy = 1+018) (5.52)

where the lowest order expressions for the coefficient functions aq, b; and ¢; are found in
example 7 for the ¢*- and the ¢*-theory.
Example 7: Relation between bare and renormalized quantities.

For ¢* we have the following lowest order expressions for the coefficient functions:

32 A
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while we for ¢ get

A3 BA2 2
- __ \) = —
@) =~ 5

For higher order perturbative calculations the above formulas generalize in two ways:
The coefficient functions a;(A),b1(\) and ¢;(A\) become higher order polynomials of A,
the degree depending on the order to which we expand. But in addition we get higher
order singularities of the type 1/¢*, k = 2,3,..., the highest order again depending on
the order to which we expand. These higher order terms are not really independent and
the associated coefficient functions can in fact all be found from the coefficient functions
ai(N),b1(A), c1(A) of the simple pole terms. An example of such a recursion relation is
given in example 13, but we will not discuss it further, although it is quite important from a
practical point of view. We can summarize this description by stating (without proof) that
the one-loop formulas (5.50)-(5.52) generalize to arbitrary order in perturbation theory in
the following way (where we note again that the higher pole coefficient functions as(A), . ..
are not really independent functions):

kfjl a ) (5.53)
St

k=1

my = m(l—i—

) (5.54)
Z, = i (A (5.55)

For fized mg, Ao and ¢ eq.(5.53) determines X as a function of p, and eqs. (5.54)-(5.55)
determine m and Zy as functions of X, and in this way as functions of u. The dependence
of p will play an important role in the following. A dual interpretation is also useful:
Assume m and A (and in addition u) are held fixed. Then the bare mass and coupling
constant will be a function of the cut off ¢.

The fact that renormalization, acording to (5.47)-(5.49) and (5.53)-(5.55), is nothing
but a redefinition of the parameters of the theory implies that we have relation:

G(n) (pu <oy Pn, M, )\7 I, 6) = Z(;n/2 ng) (ph -« oy Pn, Mo, )\07 6) (556)

for the connected n-point function. The lhs of (5.56) is finite when & — 0 by construction,
while the finiteness of the rhs is formal and depends on cancellations between Z, and G
of quantities going to infinity when ¢ — 0.

Eq. (5.56) follows from the definition of the connected Green functions as derivatives
of the free energy. We have defined the connected Green functions G™ from the functional
integral, which uses as lagrangian £™"(¢$) — ¢ - J, by functional differentiation of the free
energy F[J| = —InZ[J] after J. If we want to express the renormalized lagrangian in
terms of bare quantities, as in (5.46), but also in the presence of external sources, we
clearly have to scale the external bare sources inversely to ¢y such that ¢J = ¢gJy:

¢ =2 0, Jo=2;"J (5.57)
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We can now express Z|[.J] and F[J] in terms of bare quantities. Since the lagrangians have
the same functional form and takes the same value: L™"(¢, J) = Lo(¢o, Jp), a change in
variables ¢ — ¢g inside the functional integration for Z[J] gives, except for an infinite
measure factor C; = [l cpa Z;/Q, precisely the functional integral Zy[Jy] for the bare
theory:

CZ Z[J] :ZO[JO], F[J] :Fo[J0]+1HCZ. (558)

Since the bare connected Green functions are defined by functional differentiation of Fy[.Jy]
with respect to Jy (5.56) follows from (5.58). We can continue this analogue and define
the generating functional for the bare 1PI Green functions from Fy[.Jy] as usual:

0 F
Tolog] = FolJo] + Jo - 95, d=-—2 (5.59)
0Jy
and it follows that
c 1/2 ¢ c c
¢ =27, ¢, Tylpf] =T[¢"] —InCy. (5.60)

Since the bare 1PI Green functions are derived by functional differentiation after ¢ we
deduce from (5.60) that the 1PI Green functions will satisfy an equation similar to (5.56):

F(Tl) (pu <oy Pn, M, )‘7 22 6) = ZZ/Z an) (pla -« Pn, My, )‘07 6) (561)

The difference between (5.56) and (5.61) is the power of Z,. Heuristically this follows
from the observation that the 1PI Green function I'™ is the 1PI irreducible component
of the connected Green function G™ where all external propagators have been removed.
Since the bare and the renormalized propagators by (5.56) are related by

G (p) = Z7'GY ()

the removal of an n external propagators implies an addition multiplication with Z§ on
the rhs of (5.56) when changing from G to T'("),

Eqgs. (5.61) and (5.46)-(5.56) show the multiplicative nature of renormalization. We will
discuss that aspect later.

Let us end this section by discussing once more the renormalization procedure in light of
the results derived. Let us assume that ¢ > 0. For a given p we have relations between
the ”bare” quantities \g, mg, ¢o and the renormalized ones A\, 1, ¢ and between the related
Green functions. The relation is operational: At the tree level (no loops) this operation
is the identity, but already at the one-loop level the transformation between bare and
renormalized quantities is nontrivial. Higher order corrections will move the bare and
renormalized quantities away from each other. If we stop the perturbation expansion at
finite order and then turn the cut off € to zero this difference is singular due to the poles in
. It is less clear whether the relation between bare and renormalized quantities remains
singular if we could perform the summation to all orders of perturbation theory and then
take £ to zero. But in what sense do the bare and renormalized quantities represent
the same theory 7 One way to answer this question, is as follows: The bare parameters
can be viewed as a short distance approximation to the renormalized parameters, in the
sense that no interactions have yet had the chance to take place. As we measure the
correlation between ¢’s separated over larger distances in space and time interactions will
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modify the values of masses and couplings we attempt to measure. We can always imagine
the renormalized masses and coupling constants as being related to measurements at a
chosen length scale, and consequently they will differ from the bare masses and couplings.
However, in order to define the theory at all, we have to introduce a regularization and
thereby a mass parameter y, and the interacting, renormalized theory is defined as a limit
where the cut-off is removed. This limit is is not unique in the sense that it is possible to
find a whole family of renormalized couplings, masses and wave function renormalizations
A, ), m(p, €), Zy(1, €) which, for a given choice of of bare parameters, by the process of
renormalization, leads to finite theories when the cut-off ¢ is removed. This point of view
has a nice realization in the statistical theory of critical phenomena, as will be discussed
in detail in the next chapter. It is also the origin of the renormalization group equations
which formulate in a precise manner that the family of theories we get by starting with a
set, of bare parameters and implementing the process of renormalizations are related. We
will discuss in detail the renormalization group equations in section 7.

A dual point of view on the process of renormalization is also very useful. The starting
point is the well defined renormalized expressions when a cut off ¢ is present. The bare
and renormalized couplings, masses etc are related by expressions involving the cut off,
which is needed in order to define our theory. We now want to remove the cut off, but it
should be done in such a way that renormalized couplings, masses etc are kept fixed (and
preferable related to some physical observables). This can only be done by adjusting the
bare parameters as functions of the cut off in a specific way, namely the one given above
which relates bare and renormalized parameters. This fine tuning of the bare parameters
in order to get to a renormalized theory with no reference to the short distance cut off
also has a simple interpretation in the statistical theory of critical phenomena.

5.6 Renormalization conditions and finite renor-
malization

The procedure of subtracting only the pole terms is called minimal subtraction (MS). We
got finite results but depending on the mass parameter p. This specific subtraction is
convenient for calculations, but otherwise arbitrary. We could have subtracted any finite
constants too. It might be more transparent if we fixes the parameters in a different way.
Let us use the ¢* theory as an example. We could demand that the superficially divergent,
1PI Green functions are equal to their tree (= no loop) values at p; = 0. In the case of the
¢* interaction the superficially divergent diagrams are associated with two- and four-point
functions and the tree values are just the terms we read off from the Lagrangian:

2 4
F)Ere)ze(p) = p2 + m27 FET‘()BB(pi) =\
The above mentioned conditions therefore translate to

d

2 _ 2

L)oo =1, I'W(p;=0) = (5.62)
Clearly these requirements would fix the counter terms uniquely (also the finite parts)

and they have the virtue of showing that the arbitrariness of the theory is exactly equal to
the number parameters in the lagrangian, here m? A and the factor in front (9,¢)?. This
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means that the mass and the coupling constant cannot be calculated within the theory.
However, the non-trivial p;-dependence present in the two- and four-point functions after
renormalization allows in principle a test against experiments.

There is nothing magic about the choice of normalization conditions (5.62). For in-
stance one could use other points in momentum space for the normalization:

W =1 F(4)(p-)

POE) = (1 +m?), = len

pip;j=p>(0i;—1/4) — A, (563)

the latter prescription chosen such that s =t = v = ji?. But one can, of course, choose
any value of s,t,u and p? as normalization point.

Two renormalized theories which only differs by the choice of normalization conditions
can be related through the introduction of finite counter terms (no poles!) and exactly as
for the infinite renormalization this is equivalent to a redefinition of m and A and a finite
wave function renormalization Z,. One will therefore get relations like (5.56) and (5.61)
between the Green functions, but this time with a finite Zj.

A final point should be mentioned here. The relations (5.53)-(5.55) are particular
simple in the sense that the coefficient functions a, etc. are functions only of A\. This
is specific for MS. Other normalization condition would in general lead to coefficient
functions ax (A, m/u) depending also on the dimensionless ratio m/u. Nothing is wrong
with this, but from the point of view of practical calculations the MS- and closely related
prescriptions are very convenient. We will use MS in the next section.

5.7 The renormalization group

We will now return to the magic mass parameter p introduced by dimensional regular-
ization. We have seen that we can trade it away for an arbitrary subtraction point f.
Eventually this arbitrariness will be fixed by the requirement that the mass m(the pole
of the propagator) agrees with some physical observed mass and the ”charge” \ agrees
with some physical observed charge. In this way the ;1 dependence will eventually disap-
pear from the theory?. However, the freedom to choose p (or a subtraction point) at the
intermediate steps of the calculation is convenient, since it allows us to explore scaling
properties of the Green functions. Recall that a convergent 1PI ¢? diagram D with n
external lines contributes to the full 1PI Green function with an amplitude I'p, having the
following scaling behaviour:

FD (tpi; tm) = t4_nFD (pi, m) (564)

Had it not been for the divergences this relation would also be true for the full 1PI Green
function since it would be a sum of terms satisfying (5.64). However, the necessity of
renormalization introduces a new mass scale (p or the subtraction point ). By including
1 in the scaling we can still write:

™) (tp;, tm, tp) = AT (p;, m, 1) (5.65)

2For massless theories the situation is somewhat more complicated since there is no physical mass m
to which the p dependence can be transferred
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This means that '™ satisfies the following equation:

d
t%F(") (tps, tm, tp) = (4 — n)D™ (tp;, tm, tp) (5.66)

or, absorbing the ¢ dependence in m and pu:

9, 9, 9,
9 EATICS _
( o + me + ua +n 4) '™ (tp;, m, ) =0 (5.67)

It is now possible to get rid of the p derivative by use of the relation (5.56) or (5.61)
between the bare Green functions and the renormalized ones. Since the bare Green
functions have no dependence of y we get:

ir(”>( Mo, Ao, E) =0 = i{Z‘”/Q(A L™ (pi, \ym, €)= 0 (5.68)

d,u 0 \Pi, Mo, Ao, dlﬁ 1) ) Diy ATy W € . :
This formula should be understood in the following way: For fixed bare couplings m,
and A\ and an € > 0 we have a well defined (regularized) theory where the bare Green
functions have no reference to p1. However, the renormalized coupling and mass and Z,
become functions of u as described in connection with equations (5.53)-(5.55): A becomes
a function A\(u, £; Ao, mo), and m(\, €), Z(A, ) functions of p through A.?
When acting on I (p;, A(1t), m(p), p1)) we can write

d 0 d\ 0 dm 0

da_ 9  dro  dm 0 5.69
Md,u M8u+udu8)\+udu om ( )

Using this, and the following definitions

dA
ﬁ()W 5) = Md_|m0,/\0,€ (570)
o dZy
= 71
f)/d()\ﬁg) 2Z¢ d,u |m07)\075 (5 7 )
3 dm

m(Ae) = moAose 5.72
gt ( 5) m du | 0,205 ( )

some algebra allow us to write (5.68) as

0 0 0

(1 + 80035 4 =130 | T Ay =0 73

In this equation we have taken the limit ¢ — 0 since there is only reference to renormalized
quantities. The coefficient functions 3(\), va(A), vm(\) are called the 3-function and the
anomalous field and mass dimensions. The reason for the latter names will become clear in
a moment. (5.67) and (5.73) allow us to eliminate u0/du and we get the renormalization
group equation

( t% + ﬁ( )aa)\ [ ()\) - 1]m% — n’yd()\) +4 — n> F(”)(tpz., )\,m,u) =0 (574)

3We note again that it is due to the special simple properties of MS that Z, is not a function of m/u.
For more general normalization conditions, like the ones described in the last section, Zy = Zy(A,m/u,€).
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This equation describes the behaviour of the '™ (p;) when one scales the momenta from

pi to ip;.
It is a first order partial differential equation with characteristic equations:

P8~ e Ae=1=a (5:75)
P A0 -1 mE=1)=m (5.76)

From the theory of partial differential equations we know that the the solution to (5.74)
can be expressed by the solutions to the characteristic equations as follows:

e _
T (tpi, A,y ) = ¢4 e o S0 0, X(8), m(1); 1) (5.77)

Proof:

One way to prove (5.77) without appealing to the general theory of partial differential
equations is simply to insert the rhs in (5.74) and perform the differentiations. In order
to do that it is important to note that A(¢) as defined by (5.75) is actual a function of
A because of the boundary condition A(¢ = 1) = A. Similar remarks apply for m which
depends both on m and A. To be entirely correct we should write:

A=At A), m=m(t,m,N\).

A dN
= | BOV)

From (5.75) we get:

and differentiating after \ gives

ox BV
—t ==+ 5.78
Sl =20 (5.78)
In the same way (5.76) can be integrated to
mo[tdt, < AdN
In— = — Alt,A) —1) = — N)—1). 5.79
nit = [ FOmEN) -1 = [ om0 () 1) (5.79)
Differentiating the first two expressions in (5.79) with respect to m gives:
om m
— A= — 5.80
o, =1 (5.80)

while differentiation of the first and the last expression in (5.79) by means of (5.78) leads

to
B\ m -
BRI (3) = 3. (581)
m O\
Using (5.78),(5.80) and (5.81) it is now straight forward to verify that the rhs of (5.77)
satisfies (5.74). This completes the proof.

Equation (5.77) is one of the most important in this chapter. In order to understand
better the structure recall the "naive” scaling behaviour (5.64) which would be valid if
we had no divergences. Let us rewrite it as in (5.77)

my (5.82)

F([;l) (tpla >‘7 m) = t4inF([;L) (pla )‘7 n
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Assume for a moment that anomalous scaling dimensions 7, (A(¢)) and y4(\(t)) entering in
(5.77) are (approximately) constants as functions of . Then the characteristic equations
(5.75)-(5.76) can be solved and we get

m(t) _ m : t47’I’L e—nflt ds/s 'yd(;\(s)) — t47n(1+7d)
tl_')/m

By inserting these solutions in (5.77) and comparing with (5.82) it is clear why 74 and ~,,
are called the anomalous scaling dimensions. In general v4,,(\(¢)) will not be constants
as functions of ¢, since the so called running coupling constant \(t) will not be constant.
Only in the neighbourhood of a zero of the [-function will this be the case, as is clear
from the definition (5.75) of the running coupling constant. The zeroes of the 3-function
play therefore a special role and are called fixed points of the renormalization group. The
reason for this will be clear in a moment, when we discuss the possible behaviour of the
running coupling constant. The appearance of a running coupling constant in (5.77) is
maybe the most surprising result of the structure of renormalization group. Since ()
may either decrease or increase with ¢ (5.77) shows that the validity of perturbation theory
may depend on the momentum range we are probing, a feature which is absent in the
"naive” scaling relation (5.82). As an example let us assume that the running coupling
constant goes to zero for t — oo. In this way perturbation theory will be reliable for
large momenta (i.e. small distances), while it might break down for soft processes. This
is exactly the situation which occur for the field theories which seem to be most relevant
for the description of Nature: the non-abelian gauge theories. We will return to these in
chapter 7 and 8.

[t is important to emphasize that (5.77) does not provide us with any means of actu-
ally calculating the Green functions, since we do not know the g-function. We will end
this chapter by showing how to calculate the lowest order term in the S-function within
perturbation theory. In perturbation theory the S-function will appear as a power series
in the coupling constant and (A = 0) = 0. So A = 0 is a fized point, called the gaus-
sian fized point since the theory has a trivial gaussian action (i.e. free action) if A = 0.
As ) increases too far from zero a perturbative calculation of the first few terms of the
[B-function will not give a reliable expression for the g-function. It is, however, very in-
structive to classify the possible behaviour of 3(\) outside perturbation theory, and study
the associated behaviour of the running coupling constant ().

In fig. 13 we have showed four possible beta functions, all starting from the gaussian
fixed point.

(I) : B()) is positive and increases faster than \. In this case A(¢) will start to increase
from A and eventually it will increase to oo for a finite value of t. This follows from
the integrated version of (5.75):

Y
t:exp/A 200 (5.83)

Since the integral is convergent we see that A\ — oo for to = exp([x° d\'/B())). This
singularity is called the Landau pole. 1t signals a definite break down of perturbation
theory and maybe of the theory itself.
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Figure 5.13: Four different 3-functions

: B(A) is positive, but turns around and has a zero, i.e. a fized point \p # 0. We
now see the reason for calling \r a fixed point. Close to the fixed point we have

BA) =B Ar)(A = Ap) + - (5.84)

and the integral (5.83) will diverge as A — Ap. This means that for ¢ — oo we have
A — Ap. By scaling the momenta to infinity the running coupling constant will be
driven to the fized point Ap. Such a fixed point is called an ultraviolet stable fixed
point while the fixed point at zero is in this case is called infrared stable since A(t)
is driven to this fixed point by letting the momentum scale ¢ — 0. By changing
the momentum scale ¢ we see that A(t) will always move between an infrared and
an ultraviolet stable fixed point, provided such a point exists (in (I) we had no
ultraviolet stable fixed point).

B(A) decreases faster than A\. We have the same situation as in (I), except that
everything is turned around: As t — oo A(t) — 0: in this case the gaussian fized
point is ultraviolet stable, and we see that perturbation theory becomes more reliable
at short distances (high momenta). This phenomenon is called asymptotic freedom.
As already mentioned the non-abelian gauge theories seem to fall in this class of field
theories. The existence of a Landau pole and the break down of perturbation theory,
when we try to probe large distances is even welcome in these theories since it is
a common belief that a phenomenon like quark confinement is of non-perturbative
nature. It should also be mentioned that it is a common belief (but no proof exists),
that only asymptotic free theories makes sense as rigorously defined theories outside
perturbation theory. This might be the reason Nature seems so fond of non-abelian
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gauge theories, since these are the only renormalizable, asymptotic free theories in
d=4.

(IV) : In this case the situation is reverse from the one of (II). The gaussian fixed point
is ultraviolet stable, while the fixed point at Ag is infrared stable. Note that a fixed
point is infrared (ultraviolet) stable if the first non-zero derivative of the S-function
at the fixed point is positive (negative).

We end this section with two examples. The first illustrates the calculation of the (-
function to lowest order in perturbation theory for the ¢* theory in d = 4 and the ¢3
theory in d = 3. The first turns out to have an infrared stable gaussian fixed point, while
the other has an ultraviolet stable gaussian fixed point. In addition the above mentioned
relations between the lowest order pole terms and the higher order pole terms are proven
in the examples.

Example 13: Perturbative calculation of the g-function.

¢*: The B-function was defined as

where we have put in the explicit analytic dependence on € away from d = 4. Recall the
relation between the renormalized coupling constant A and the bare one \y:

Ao = pu° (A + i ak(;\)>
k=1

€
Differentiation with respect to p for fixed A\g and use of the definition of the S-function
above leads to

— ak(\) — @'k(N)
0:5<A+kzl v >+,8(>\,5) <1+kz1 o (5.85)
and the solution for 5(\,¢) compatible with the limit ¢ — 0 is
BN e) =—eX—ai(\)+ Xad'1(N)
or (taking € — 0)
A) =1 oA _ Ai — Day (A 5.86

The S-function only depends on the simple pole function a;(A). This is true to all orders
in perturbation theory. In fact all the other coefficient functions ax(A) can be expressed
entirely in terms of this first functions since it is not hard to derive from the consistency
of (5.85) the following recursion relation:

day ()

O~ Dara(3) = () 48

dX

Since we have already determined the first term in a; we now get the following lowest
order S-function:

By = 22 Lo (5.87)
- (4m)? '
and we can use this to expression to find the running coupling constant:

(5.88)
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To this lowest order we are in case (I) above, and the running coupling constant increases
with the scale until we hit the Landau pole. Of course lowest order pertubation theory
becomes invalid long before. We can only expect the above formula to be valid as long as
16”2 In(t) < 1.

We use (5.86) and the one loop result for a;()) to get

BN =7 g (5.89)

and the running coupling constant will be given by

)\2
3_\2
We see that the theory has asymptotic freedom ! To the one loop approximation it
belongs to case (III) discussed above. Unfortunately it is not clear how the ¢3-theory
can be defined outside perturbation theory, since the functional integral is ill defined (the
action is unbounded from below).

N (t) =

(5.90)

Example 14: Perturbative calculation of v4(A) and v,,(\).

Tm

Yd -

: From the definition we have

m2 = (1 + Z ) (5.91)

If we differentiate after u the lhs is zero while the rhs depend on u only though A (in MS):

0= dm (1 + Z ) m2(\) (Z blk(A)) iy (5.92)

k
€ du

or, using the definition of 7,,(A, ) and 5(\,€) and the result from ex.13 for G(\,€):

0=2vn(Ae (1 + Z ) (Z bl’;i”) [—eX + BN (5.93)

k

Assuming a power expansion of v,,(A,¢) in € leads to the absence of any such powers
and instead we get a relation between +,,(\) and b’1(\) and recursion relations which
determines the higher by’s in terms of b; (analogous to the situation in ex.13):

A

(V) = SH10) (5.94)
M1 = B + AV b (5.95)

From the definition we have
Zy=1+ i C’“E(,f ) (5.96)

and differentiating as above after p and using the definitions of 8 and ~4 leads to

2Zsmu(ne) = B ) 3 CE

k
% €
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or

2v4(), €) (1 +y C’“(,?
k

€

)> — (—eA+80) X Clkgf) (5.97)

& £

and as above consistency as a Laurent series in ¢ implies that v4(\, €) can have no depen-
dence on €. It further leads to a relation between v4(\) and ¢1(\) and recursion relations
between the higher ¢, coefficients:

2 = =510 (5.98)
)\C’k+1 = ﬁ()\)clk + )\C’l Ck. (5.99)

From ex.7 we have the expressions for b;()\) and c¢;()\) for a ¢* in d = 6 and a ¢* theory
in d = 4 and we can calculate v, and 4 for these theories. We leave that as a trivial
exercise.
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Chapter 6

Quantum Electrodynamics

6.1 Preliminary remarks

The lagrangian for the abelian gauge theories (in minkowskian space-time) consists of two
parts. The first part is the lagrangian for the electromagnetic field and the second part is
the matter part, minimally coupled to the electromagnetic field. “Matter” can be either
fermionic or bosonic fields:

LA, ¢) = Lem(A) + Lper (1P, A) + Lpos (0, A) (6.1)
where
1
Eem(A/t) = _ZFZV(A) (62)
Efer(waA) = _@E(l‘)(w—i_m)d}(l‘)
Loos(p, A) = —(Dup)"(D*p) = V(p™p)
In these formulae
F.(A) = 0,A, —0,4, (6.5)
D, = 0,—1ieA,
E = 7uD'u

and the y-matrices satisfy

{/Y,ua 7V} - 29uu ) 7; = erfYO (68)

Local gauge invariance of the lagrangian is the following transformation, which in fact
leaves each of the three parts of the lagrangian (6.1) invariant:

Aul@) = Ay(2) = Au(@) +9ux(2) (6.9)
Uu(r) = ¥ (2) = & XDy(a) (6.10)
(@) > ¢(x) = e p(x) (6.11)

We can view this invariance as an invariance under the action of the group U(1) since
it corresponds to multiplying the matter fields by a phase factor. Since the phase factor

143
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varies with space-time points x, we have an independent U(1) group associated with each
space-time point and formally the total invariance group is

Gino = [[ Us(1) (6.12)

rER

We shall see the significance of G, shortly, but for a geometrical interpretation of local
gauge invariance, both abelian and non-abelian, we have to refer to the chapter on classical
gauge theories.

When we rotate to euclidean space the Lorentz group goes into SO(d) where d is the
dimension of the euclidean space. In minkowskian space-time the ¢ fields transform as
spinors. After the rotation they will transform as spinors of SO(d). The spinor represen-
tations of SO(d) can be characterized by hermitean y-matrices, now satisfying

Tt =20,  p=1,...d (6.13)

The algebra defined by the 7,’s is called the Clifford algebra and the dimension of its
fundamental representation is 2/4/2 ([d/2] = integer part of d/2). From the v,’s we get
the generators s,, of the rotation group SO(d) :

1 1
Suvy = 50-[“/ = Zh/uaf)/l/] (614)

There is an important difference between odd and even dimensions, however. In even
dimensions d = 2n we can form

Yar1 = —(=9)" V1. .20 (6.15)

Ya+1 is a hermitean matrix # 1, which anticommutes with all v,, p=1,...d :

Ve, Wt =0 , i =1 (6.16)

This means that the representations of SO(d) corresponding to the generators s,, are not
irreducible since 7411 commutes with all s,,. In fact the irreducible representations can
be labelled by the eigenvalues of v4,1 : the chirality. In odd dimensions we do not have
such a 4.1 at our disposal (4.1 o I) and the concept of chirality does not exist. For
instance we have for d = 3 :

M =01, Y2=02 , Y3=03 ,%Va41 = —1 010203 = 1 (6.17)

We have already defined the Feynman path integral in terms of anticommuting “classical”
Fermi fields, and noticed that ¢/ and 1) have to be treated as independent variables in the
functional integral. We cannot have a relation like (6.8) in euclidean space since it clearly
singles out a direction (~ 7p). We will define ¢ to transform like the adjoint of ¢ with
respect to SO(d) rotations. Then 1 1) is a scalar, zﬁvuw a vector, ¢y4111 a pseudo-scalar
(in even dimensions) etc.

With these definitions we have (with M = minkowskian and E = euclidean)

(Y0u)ar = (VuOu)m (6.18)
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and the action for a free Dirac fermion transform as follows under rotation to euclidean
space:

Sul] = i [ @l 90#9, +mpg] —

~Splp 9] = — [ d% B0, + m) (6.19)
so the euclidean lagrangian can be written as

‘CE(I/;a ¢) = &(Vuau + m)z/) (6.20)

Also the rotation of the electromagnetic field to euclidean space deserves some discussions.
Since A, has a Lorentz index p, the rotation ¢ — —ix, should be supplemented by a
rotation of Ay if we want to keep the terms Fj3 in the lagrangian real. Since A, transforms
as x,, it is natural to transform A, as £y when we rotate to euclidean space. The “electric”
field will then be given by:

m_ 0 9
B = 5 A= 5 Ay = —iF (6.21)

and the euclidean lagrangian and action will be:

1

1
L) = JFDED = S(EP) + BY) (6.22)
Sl = [d'z £ (4) (6.23)

With these conventions for rotation to euclidean space the electromagnetic lagrangian
satisfies the same rule as a scalar field: the functional form of the euclidean lagrangian is
the same as the minkowskian hamiltonian.

In the following we will always work with the euclidean versions of Lsen (¢, 1, A),

L(bos)(@a 90*7 A) and £(em) (A)
6.2 Definition of the functional integral

One main problem in quantization of gauge theories is exposed by considering the free
lagrangian L ey (A). The corresponding action (in euclidean space) is

Stemy|A] = % [t Ay () (078 + 8,0,) Aul) (6.24)

It is a gaussian functional in A,, and from (6.22)-(6.23) it is clear that it is positive
semi-definite functional. However, due to the gauge invariance (6.9) it has zero modes:

(=0%6, + 0,0,)0,x = 0 (6.25)

for any function x and (6.25) means that we cannot define the Green function G, (z,y)
satisfying
[—0%0 + 0,0,]Gu(m, ) = 6,00 (z — 1) (6.26)
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The existence of such a Green function is necessary if we want to perform gaussian integrals
of the kind

/DA exp——/d v (Ay(=0%0, + 0,0,) Ay — J,A,)

T= 700 exp s / dz dlyJ, ()G (2, ), (y) (6.27)

We will now formulate the quantization procedure in a way which is slightly more compli-
cated than necessary, but which allows us to generalize the procedure to non-abelian gauge
groups. Let us define expectation values of gauge invariant observables O(A, ¥, v, ¢*, ©)
by the formal expression:

I D(Aupep”) O(A, ¥, 1), so* p)e STl
I D(Apdppr) e S1Av el

For the reason mentioned above, both numerator and denominator are ill defined. In
the following we will show that it is possible, by a number of formal manipulations, to
write both numerator and denominator as well defined functional integrals times a formal
product

(O(A, 9,9, 9", 9)) = (6.28)

Vol(Giny) = [] / dx () (6.29)

Gliny 1s the invariance group (6.12) and [dx(x) can be viewed as “volume” of the group
of gauge transformations in x. This interpretation will be even more transparent in the
non-abelian case.

In this way we will manage to cancel an infinite factor, independent of any dynamics,
between numerator and denominator and we will be left with an effective action

SerflA, 0,1, 0", ¢

which is no longer invariant under local gauge transformations, but to which we can add
source terms and define generating functionals in standard fashion.

The virtue of this approach is that since the starting point, (6.28), is gauge invariant
we know that we are bound to get gauge invariant results when we use Se;s[A] in the
calculation of expectation values of gauge invariant observables, even if S.;s[A] is not
gauge invariant. The disadvantage of the approach is its formal nature. We could have
avoided that by first eliminating the superficial gauge degrees of freedom (“fixing the
gauge”), but we would then have lost manifest gauge invariance. We will consider here
only the first approach.

The first step is to impose a gauge condition. We will be interested in covariant
conditions like

0, A, (x) = c(x) (6.30)
in order not to break euclidean invariance. The main requirement for a gauge condition
like (6.30) is that there for every field A,(z) exists one and only one field A’,(z) =

A, (z) + d,x () among the class of gauge transformed fields of A, (x), such that (6.30)
is satisfied !. This is illustrated in fig. 1. The gauge condition defines a subspace M|[A]

'This statement should be interpreted with some care: assume (6.30) for A, (z). If a gauge transformed
A’ (z) = A, (x)+0, x also satisfies (6.30) we have: 8%y = 0. Clearly this equation has solutions. However,
it has none in euclidean space which fall off at infinity.
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Or[A]

MIA]

Figure 6.1: For a given configuration A(z) the orbit Or[A] should intersect M[A] only
once.

in the space of field configurations. For a given field configuration A, () the orbit of A,
(Or[A]) denotes the subspace of field configurations which can be obtained by a gauge
transformation of A,. The requirement is that Or[A] and M[A] intersect in one and only
one point which we will denote (). This determines x(*)(z) as a functional of A. For
all A,(x) we have

PN (x) = —0,A,(z) + c(x) (6.31)

which has a unique solution under the usual assumption in euclidean space that A, (z)
and c(z) falls off sufficiently fast of infinity. Let XA, denote the gauge transformed of

A, () by X(x)
¥4, (2) = Au(o) + 0x(). (6.32)

1

Lemma: / IT dx(z) - I 6 (—0.(¥Au(y)) + c(y)) = m

TERY yeERA

Proof:

By definition
—0,(XA,) +c=—0*x— 0,4, +c

and, by (6.31), a shift of integration variables x — x + x“ changes the Lh.s. of the
equation in the lemma to

[ T ax() TT6(-0*x(»)) (6.33)

For a finite, positive definite, symmetric matrix A;; we have:

N N 1

[T & [T0(Aixg) = —— (6.34)
det A

=1 7

as is seen by choosing an orthonormal basis. The proof formally generalizes to the
infinite dimensional matrix —0%(z,y) = —026¥ (x — 5). This completes the proof.
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As a result of the lemma we can write
17 = [TI dx(a) det(=6%) T10 (=0, (“Auy)) + e(v)) (6.35)
T y

and we can get rid of the d-function by integrating over the function ¢(y). Note that we in
this way take a kind of average over many different gauge conditions of the form (6.50):

”1(@)” — /D C(ZU) efﬁ fdd:L‘cz(:L‘) .71
- / [] dx(x) det(—8?) e~ 3 [ *a@u(xAu(@)’ (6.36)
The factor “1” from (6.35) have been inserted in the second line of (6.36) and the c(z)
integration performed.
By a number of formal manipulations we have produced an awfully complicated factor
“1(«v)”, which depends on nothing but a constant «. Clearly we can multiply path integrals

like [ DA e~ %4l by this factor without changing expectation values like (6.28) and we
can write (suppressing any dependence on 1, ¢ for notational simplicity):

/ DA~ SUO(A) “1(a)" = det(—0?) / I1 dx(z)- / DA S5 [ 2@ A2 0(4) (6.37)

If we consider only gauge invariant observables as in (6.28), a change of variables: A, —
A, — 0x (i.e. a gauge transformation without —y) will not affect S[A] and O(A) since
they are gauge invariant. But 0,,(XA,) — 0,A,. All reference to x has disappeared inside
the functional and we have managed to extract an infinite factor

det(—?) / I] dx(x) (6.38)
which is independent of any dynamics.

For the purpose of calculating gauge invariant quantities we can write:

I D(Ayhopt)O(A 1, 1), ¢, p)eSeriAbwe™e)
B fD(AT/)'IE()O()O*)G_SEff(A/‘Z/‘p,Lp*,Lp)

(O(A, 9,9, 0%, 9)) (6.39)

where

_ 1 _
Seff (Aa 1/)7 1/)7 90*7 80) = / ddl‘ﬁem(A) + %(GMA/L)2 + £f6T(A7 ,QZ}7 @Z}) + Lbos(Aa 90*7 90)

(6.40)
These formulae represent the final result of our formal manipulations?. The “effective”
lagrangian

1 1
LEN4) = -F2 + 5(auAu)? (6.41)

em _4 uv

2 At this point the difference between abelian and non-abelian gauge theories should be mentioned. In
the case of non-abelian gauge theories one can repeat many of the above steps. The difference is that
J T1, dx(z) is replaced by [ ], dU(z), where the group element U refers to the non-abelian gauge group
and dU is the Haar measure for the group. Further the factor det(—9?) will be replaced by det(—9,D,,)
where D, = 0, — iA, is the covariant derivative. The determinant now has an explicit dependence on
A, and cannot be taken outside the functional integral. This will lead to additional interactions in the
effective action, which are conveniently handled by the introduction of so-called “ghosts”.
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and the corresponding “effective” action
1
SN / dizA, (—825W . —)aﬂay> A, (6.42)
o

is no longer gauge invariant, but as already discussed it will not affect the calculation of
gauge invariant observables. The important point is that SC/P[A] is a gaussian functional
which is invertible. In fact we can write:

e ddk -
S = 5 [ G AR E AR (6.3
1

(G(O));ul(k) - k25uv -(1- &)kukv (6.44)

and G(0) (k) has to satisfy

1
</€25W (- E)k“k”> GO = 6, (6.45)
The solution is

GO = L (8 — (1 — )k 6.46
00 = 2 (- (1) (6.46)

It is seen that the propagator simplifies if we choose @ = 1 (a choice called Feynman
gauge, although it does strictly speaking not correspond to a gauge choice in the sense
(6.30)). In practical calculations we will use oo = 1.

6.3 The Ward-Takahashi identities

The obstacle for defining perturbation theory was removed in the last section and using
the effective action (6.40) we can proceed in the standard fashion and define generating
functionals for the full -, the connected - and the 1PI Green functions. For notational
simplicity we will confine ourselves to consider the coupling between fermions and gauge
fields, i.e. quantum electrodynamics (QED). The additional coupling of the gauge field
to a scalar field can be worked out in a straight forward manner. The partition function,
or the generating functional for the full Green functions is

210,6,8 = [ DADyDGeSusiviived (6.47)
Seps = [ d'a [zeff(A, 6,0) = T, — €0 — ] (6.48)
1 _
Losr(A b, ) = ( —9,4,)° + %(@Au)z + (P +m)y (6.49)

As usual 1,1, &, € are anticommuting Grassmann variables which carry spinor indices
which we have not written explicitly,

Z[J,€,€) = e (6.50)

T[A®, D, @] = F[J, £, €] + / d'e [1u(@) ALY () + E(@) D (@) + 9D ()€ (x)
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for the generating functional for connected Green functions(F) and 1PI Green functions
(T'). We have (left derivatives only)

oF oF oF -

LY ) OF e OF e 59
or or - or

6A—Efl) =Ju W =-£ W = (6.53)

It is important to realize that the Green functions which we construct by functional deriva-
tives are in general not gauge invariant, since Z, F' and I' are not gauge invariant due to
the presence of source terms and the gauge fixing term. They are nevertheless important
quantities, both as tools for calculating gauge invariant observables and for proving renor-
malizability of the theory in d < 4. The explicit breaking of gauge invariance leads to
relations between various Green functions, known as Ward-Takahashi identities. They are
easily derived from (6.47) by noting that although (6.49) is no longer invariant under local
gauge transformations, the measure DADD) is invariant under such transformations 2.
By performing a change in integration variables corresponding to an infinitesimal gauge

transformation e“(*) x~ 1 + iee(z) + 0(e(x)?) :

P(z) =~ (1+iee(x)) () (6.54)
Al(z) = Au(z)+ 0, e(z) (6.55)

Z[J, €, €] itself will not change since we only change integration variables. On the other
hand the parts of S.;; which involve the source terms and (9,A,)? will change, and to
first order in €(x) we have

0=07 = /DAW eff/dd

T 0¢ +ie € (€ — 9€) — —(a A,)0? ] (6.56)

or (performing the functional differentiation with respect to €(x))

0z 1 5., 07 Z 07
0 5 () aaau 5, Opdu(x) - +Ze<§ 5§+6§£> (6.57)
This equation can be expressed in terms of F":
1 5. OF ) 5F 6F
or (using (6.52) and (6.53) )
_a 0 aﬂAlL - a/‘ (SAl(fl) o 51/)(cl) 5#;(0[) =0 (659)

Eq. (6.58) is the generalized form of the so-called Ward-Takahashi identity in QED.
The corresponding identities for 1PI functions are sometimes called the Lee-Zinn-Justin
identities.

We can use (for instance) (6.59) to derive relations between different 1PI Green func-
tions by successive functional differentiation after A,,,, .

39! (z) = e!*X(@)q)(x) is a unitary transformation, while Al (z) = Au(z) + 9ux(x) is a translation.
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6.3.1 The photon propagator
Differentiating (6.59) once after A()(y) leave us with
1 9 90 0 62T

- = 5D (g — ) —

= 0. (6.60)
A(cl)’w(cl)’&(cl)

a dri Ox,

Recall from chapter 4 that the inverse of the photon propagator G, (z,y) is
52

G Hx,y) = 6.61
w (:9) oA () AL (y) (o0
and let us write .

G = (G9) 411, (6.62)

pv
where 11, is the real 1PI part of the two-point function* and GES/) is the free propagator,
given in momentum space by (6.46). By Fourier transformation (6.60) reads

b (5 Kb = [(GO),10) + T (R)]) =0 (6.63)

If we recall (6.44): (G) .} = k?6,, — kyk, + ~kyk, we see that the gauge dependent part
which refers to a cancels and we get:

kTl (k) = 0 (6.64)

This equation tells us that the radiative corrections to the photon propagator are purely
transverse and we can write

le(k) = (kQ(SMV - kuku)n(kQ) (665)

The transversality of I, further shows that it is gauge invariant since a gauge transfor-
mation in momentum space has the form A}, (k) = A, (k) —ik,x(k). We will return to the
importance of (6.65) when counting divergencies in QED.

6.3.2 The Ward-Takahashi identity
By differentiating (6.59) with respect to 1, (y) and v5(2) we get

o _ |0 53T -
L 0mu 6y (2) 60K (y)6 A ()
5T ST
— iedD(z —y — +ied D (x — z — ] 6.66
( )wg”(z)w&d’ (2) ( )&/Jéc” (2)505" () wz,p:Aio )

It is a useful exercise to check that (6.66) is actually satisfied if we use the lowest order
approximation I'® for the generating functional. The lowest order approximation is of
course nothing but the action itself:

) [A(Cl)7 @E(Cl)’ 1/}(05)] - S[A(Cl), Q/j(cl)’ 1/}(05)] (6.67)

“Recall this peculiarity of I'. Precisely for the two-point function §°T'/§A? it does not generate the
1PI part but the inverse propagator which has the decomposition (6.62).
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Figure 6.2: The Ward-Takahashi identity for 1PI Green functions

However, (6.66) is valid to all orders and if we use the definition of three-point vertex
function and two-point function (the inverse propagator)

6°T
S, Y)as = - — (6.68)
51/)é ) (y)&/}& ) (x) Beh) leD) Ale =g
530
Las(z;y, 2) y — y (6.69)
5wé )(2)51/)51 )(y)(SAEL )(l‘) Wplel) gp(el), Aleh =

we can write:

D paplaz,2) = —ied® (@~ 2)S5 (g~ 2) +ied ez~ S5 (@ —2) (670
Ty

or by Fourier transformation:

L (03 @2, 01) = € (7" (@2)ap — Sp' (1)) (6.71)

where the photon momentum p = ¢, — ¢; by momentum conservation. This relation is
illustrated in fig. 2 and it allows us to relate the divergent part of the fermion propagator
to the divergent part of the photon-fermion-fermion vertex. We will return to this shortly.

6.3.3 The n-photon vertex function (n > 3).
Differentiating (6.59) after A( (zy),---, Al (z,) leads to

1
0 omr —0 (6.72)
O SALD (1) -+ AL () | yienr_enpien <o
or by Fourier transformation
kl(ill)Fl(iyi)y"',Hn(k(l)7 KMy =0 (6.73)
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Since FEZ) ., 18 symmetric such a relation is valid for any k® and it has importance when
counting the superficial divergence of n-photon vertex diagrams. The superficial degree

of divergence of the n-photon vertex function is in d = 4 (see later)
w(D)=4—n (6.74)

which indicates that not only the two-point function but also for instance the four point
function should be superficial divergent. This fact would be worrisome for the program
of renormalization since we have no candidate for counterterms of order Aﬁ(m) in the
lagrangian. However, precisely as the transversality constraint (6.64) for the two-photon
function allowed us to extract two “kinematical” powers of k,, as shown explicitly in
eq. (6.65), and in this way reduce the divergence of II,, by two, it can be shown that
(6.73) allows us to extract a “kinematical” power of n and in this way reduce the effective
superficial divergence from 4—n to 4—2n. We conclude that only the two-point function is
superficially divergent. Note that individual four-photon diagrams could be superficially
divergent, but then we add all diagrams to a given order these divergencies will cancel
provided that every step in the about formal manipulations has been well defined. This
obviously requires that the reqularization we use is gauge invariant, since we have used
the “naive” transformation properties of the effective action under gauge transformations.
Dimensional regularization satisfies this requirement.

Finally we note that in fact the (2n+1)-photon vertex function vanishes identically (Furry’s
theorem). This is a consequence of the invariance of the QED lagrangian under charge
conjugation. In order to define charge conjugation we note the following theorem: For
any two [d/2]-dimensional (hermitean) representations v, and 7, of the Clifford algebra
there exists a unitary transformation (i.e. a [d/2] x [d/2] matrix) U such that

Yo = U U (6.75)

If v,’s satisty the Clifford algebra the same will be true for minus the transposed matrices
—7}’s. Let us denote the corresponding matrix U from (6.75) by C:

Cy,C™' = —,. (6.76)

We now define the charge conjugation transformation as follows:

v ooy =Cyf
v =y =—ypC (6.77)
A, = A=A, (6.78)

From this we get, using the anticommuting nature of the fermionic variables, the following
transformations:

) Yathy — @T/)i == 57/31T = P11a ) (6.79)
Vot — Py = %T’YZT/){ = —P1Vuta. (6.80)

This implies the following transformations of the non-trivial terms in the lagrangian: )
and 1 Ay are invariant, while

&’Yﬂ(aﬂ/}) - _(aﬁﬂﬁ)%ﬂ/)- (6.81)
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But a partial integration leads to invariance of the action term associated with 1/3%8“1/) 3,
It is now clear that the action is invariant under charge conjugation. The measure in
the functional integral is also invariant up to an (infinite) product of -1’s which however
is independent of any dynamics and cancels between numerator and denominator in the
functional integrals of (A4,, A,,---A,. ). The change of variables (6.77) now gives:

(A (1) - - Ay, (20)) = (=1)" (A, (21) - - - Ay, (20)) (6.82)

which tells us that Green functions with an odd number of external photon lines and no
external fermion lines must vanish.

Let us remark that in the case of non-abelian gauge theories charge conjugation does not
act as simple on the gauge fields as A, — —A,. Consequently, the (2n + 1)-gauge field
vertex function does not vanish. In addition relations like (6.73) are not satisfied and both
the 3-gauge field vertex function and the 4-gauge field vertex functions are superficially
divergent. But in this case it is not a disaster since the lagrangian contains both A% and
A% interactions.

6.4 Feynman rules and one-loop renormalizability

6.4.1 General remarks

After the genenal words of wisdom in the last section we will turn to the actual calculations
at one-loop level. )
The free propagators for QED are read off from the gaussian part of S.s/[A, ¥, 9]

S = 5[ Gt ADEDE DAL (6.59)
St = [ 5 VbSO wa(h) (6.8)
where

(SO k) = —i f+m, (6.85)
(GONAR) = K6 — (1= D)kuh, (6.86)

or (as already discussed)
SOk) = 7 +sz = Zf ++n$ (6.87)
GW(k) = % <5u,, —(1-a) k‘,;f”) (6.88)

The interaction is

SUI[A, ), 4] = —ie [ ds P(a)yAu(e) () (6.89)
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Figure 6.3: Feynman rules for QFED in euclidean space.

and the corresponding interaction vertex of the Feynman graphs will get a factor (ie,)as-
The rules for Feynman graphs are shown in fig. 3.

We can analyze the divergencies in the same way as for scalar theories. Let us here
concentrate on the theory when the dimension of space-time is four. The coupling constant
e is dimensionless in four dimensions:

] =0 (6.90)

According to our analysis for scalar theories this is a necessary condition for renormaliz-
ability and this conclusion is not changed by the presence of fermions. The counting of
superficial divergencies is slightly different, though. The fermion propagator falls off like
1/k, not 1/k* as the bosonic propagator. Repeating the arguments in chapter 5 we say
that the superficial divergence w(D) of a 1PI diagram D with I, internal photon lines
and Iy internal fermions lines is

w(D) =dL — 2[ph - [f (691)

L denotes the number of loops and d as usual the dimension of space-time. Eq. (6.91)
is nothing but powercounting in the corresponding Feynman integral. If E,, and Ef
denote the number of external photon and fermion lines and V' the number vertices in the
diagram D we have

Uy + Epp =V : 21 + By =2V (6.92)

since each vertex has one photon line and two fermion lines, and since internal lines will
be counted twice when counting lines connect to vertices. In addition we have

L—(Iph+[f)+V:1 (693)

For d =4 egs. (6.91), (6.92), (6.93) imply:

3
w(D) = 4= By — S (6.94)
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Figure 6.4: Superficial divergent 1PI graphs in QFED

This leaves us the superficially divergent 1Pl diagrams shown in fig. 4. From charge
conjugation invariance it follows that the one- and three-photon vertex functions are
identical zero, as already mentioned. Further we know from the Ward-Takahashi identities
discussed in the last section that the real superficial divergence of the photon self-energy
is not two, but zero and the real superficial divergence of the four-photon vertex functions
is not zero but minus four. This reduction of divergence was proven only for the sum
of all diagrams to a given order, and in addition we have implicitly assumed that the
regularization used, in order to make sense of the Feynman integral, respects the gauge
invariance of the original lagrangian. This will be fulfilled by dimensional regularization.
Finally the Ward-Takahashi showed that the radiative corrections to the photon energy
self-energy are purely transverse.

In the next subsection we will calculate the divergent one-loop diagrams and show that
the pole terms can be cancelled by adding counterterms which are local polynomials in
fields A,,, ¥, 1 of a structure already present in the original lagrangian. The transversality
of the photon self-energy shows that there is no counterterms associated with the gauge
fixing part (9,A4,)? of S©/H[A 4, 1]. Anticipating the results of the next subsection we
can therefore write for the counterterms: (¢ =4 — d)

e’ 2
oL =(Z=DiFL, Zi—1=-75° (6.95)
Loy = (Zo— 1) P, Zy—1= ¢ 2 (6.96)
e T A e - 167%¢ '
- e’ 2
Lap = (Z—1)pAY, Zi—1=—15" (6.97)

5 Alterntively one can write the kinetic term as §(¢7,0,¢ — (0,¥)y,%). It is then explicitly invariant

under charge conjugation, and it differs only from ¢ A¢ by a total derivative term 38, (¢v,%), which
does not contribute to the action due to the boundary conditions
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. e? 2
Lgs = (Zm = V)m, Zp—1= 5= (6.98)
and the renormalized 1-loop QED lagrangian will be given by
clren)  — pleff) 4 spe
VA 1 - _ .
= L+ 5o (A + 2ol P+ Zumibip + Zy(—ied AY)  (6.99)
It follows that we can regard £ as a bare lagrangian L :
£(7“6n) (Aa ,J}a 'l/), €, «, m) = L(()eff) (A()a ,J}Oa 'l/)(), €, O, mO) (6100)
by the following multiplicative renormalization:
AO == ZgA
Yo = Loy
Yo =\ Zatp
Zy
€ = ——=-¢€
‘ 7o Z3
Qg = Zg&
L,
= —- 6.101
mo 7 m ( )
Note that the explicit calculation (6.96) and (6.97) shows that

This result is valid beyond the one-loop approximation. The Ward-Takahashi identity
(6.71) shows the divergent parts of Z; and Z by consistency have to satisfy

Zit = gl (6.103)

and since M S only use the divergent part in its definition of Z; » we could have anticipated

(6.102) and we get

1
ep = —re€ (6.104)

Z3
The correct way to write this relation in d = 4 — ¢ dimensions, where e strictly speaking
should be replaced by é = p*/2e, [¢] = 0, is (as discussed in detail in chapter 5)

2 2
. &/2 3
eo = 1'% (1 + 553 -+ Ol )) (6.105)
from which we get, using ua%eo =0,
% _ Ble) = <+ 0(e) (6.106)
-_— = e) = e .
Hou 1272
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As discussed in chapter 5 this shows that e = 0 is an infrared fixpoint and we can solve
(6.106) to get the effective coupling constant &(t) at scale i expressed in terms of the
renormalized coupling constant e(fg) at scale g
02
Et)=——=—— , e =e(u) (6.107)
1 — 32 Int?

We see that é(t) grows with £. We can of course only trust (6.107) as long as % Int? <«
1, but if the result is nevertheless extrapolated to large t it hints the breakdown of
perturbation theory when e(t) — oo at the Landau pole t, = e7°/¢. We leave it
as an exercise to assume the validity of perturbation theory at (say) ev scale and with
e2/4m = 1/137, and calculate the energy scale at which the Landau pole is located.

6.4.2 ~ matrices in d dimensions

We will use dimensional regularization in the calculation and one problem which arises
is the analytic continuation of the «y,-matrices and the associated Clifford algebra to d
dimensions. As mentioned above the lowest dimensional representation of d ~y-matrices
satisfying the Clifford algebra is 2[%? when d is an integer > 2, and this dimension is not
analytic. Two approaches have been used: to keep the dimension of the v, matrices fixed,
i.e. to four if we work in four dimensions or to take it to 2%/2. We will choose the first
convention and keep the dimension of the v, matrices fixed to some appropriate value,
depending on the dimension of space-time in which we want to consider the theory, i.e. if
we want to do calculations for two-dimensional QED we would take the dimension to be
two etc. We will now derive some useful formulae.
The basic relation is

{’Yu, ’71/} = 26;“/ -1 (6108)

where [ is the unit-matrix of appropriate dimension as discussed above. If we consider
four dimensions we have Tr I = 4 even when continued outside d = 4. Two relations
follow immediately from (6.108):

Yy =d- 1
Yo Yur *** V) Vo = 2% Vo " Vitmer = Vo Var = * Vitner ) VoI

Combining these relations for n = 1,2 and 3 leads to

WV = (2 - d)fyu
VoY Yo Vo = AOpypy - I+ (d — 4)7#1%0
Yo Vur Yo Yus Yo = —2VugVua Vs — (d - 4)f)’u17u273

Another relation with can be derived from (6.108) is
Tr Yy = VYpzn = 5M1M2Tr Yus = Vpon — 6M1M3Tr Y2 Vpa =" Ypon T+
+5ﬂ/lu2n Tr f)/ﬂz2 e 7“27171
and iterating this equation leads to

Tr Ve = OpupTr 1
Tr Yy Vs Vs Vs = (5#1u2 Opspa — OprpisOpuopa + 5u1u45u2n3) Tr 1
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Figure 6.5: The divergent one-loop diagrams in QQED

The final useful observation is that

Tr Yoy * " Vpgngr = 0

since repeated application of the basic relation (6.108) allows us to reduce the trace of
an odd number of v matrices to that of single matrices. But they have trace zero since
Yu Yo = =YY for v # p implies (no summation over repeated indices):

Tt %% = —Try, = —Tr vy,

while the cyclic property of traces gives

Tr vy ve = Tr 72 = Tr .

6.4.3 The photon self-energy II,,(p) and Z;

The three divergent one-loop diagrams are shown in fig. 5. We will now discuss how to
extract the divergent part of the diagrams, starting with the photon self-energy.
From the momentum assignment of fig. 5 and the Feynman rules we have

M) = (1) [ s (mkﬂé%)w (le)

_ g/d%fﬂmﬁw+m+mhﬁk+ﬂ
(2m)d [(k + p)? + m?]|[k? + m?]

(6.109)

In this formula we have as usual that & = u*/2e where e is dimensionless and ¢ = 4 — d.
We now follow the same path as for scalar theories and introduce a Feynman parameter
« and a shift £ = ¢ — ap in loop momentum:

d% Tr yulild + (1 — @) )+ mnli(f — o p) +m]
M, (p —eu/ mj’ Al i (6.110)
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By symmetry the odd powers of ¢ in the numerator vanish, and traces of odd power of
~v-matrices vanish according the discussion above. In this way we are left with a numerator

— (qagqs — (1 — @)paps) Tt vuvavuvs +m° Tt vu7. (6.111)

We need to calculate two ¢ integrals

/ diq 1 I'(2—-4d/2)
(

2m)¢ (g2 + a1 — a)p? + m?2)? (4m)42[a(1 — ) p? + m?]2—4/2
/ ddq qaqﬁ _ (SOé_ﬁ/ dd q2
(2m)¢ (¢ + a(l — a)p? + m?)? d (2m) (¢®> + a(l — a)p? + m?)?

dap [D(1—d/2) —T(2—d/2)]
(4m)42 d [a(1 — a)p? + m2]|1—d/2
dap T'(2 —d/2)
(4m)4/2 (2 — d) [a(1 — a)p? + m2]t-d/2

In the second integral we have used the replacement g,qs — 043¢>/d which follows from
symmetry.

If we combine the result of integration with the trace identities above we finally get
(after some algebra)

e a(l —a)

HMV(p) = _(p 5MV_pMpV) 2Tr I F(?) W /da [(Oé(l _ a)p2 + m2)/(47T,U/2)]E/2 (6112)

We see that the photon self-energy is transverse in accordance with the general Ward-
Takahashi identities. We can now expand in ¢ and get (to order O(¢))

e [12 7y 2

My (p) = ("0 = Pupv) 5 (6.113)
The finite part of (6.113) contains a lot of physics and we will discuss this further in
the next section. Here we concentrate on the determination of the counterterm in the
renormalized lagrangian which will cancel the pole term in (6.113) if we calculate the

effective action I" to one loop.

2
1 e” 2 1
s = —1 = (Oudy - 8,A4,)% = 1 (25— 1)(9,4, — 8,A,)? (6.114)
will precisely do this job and we get finally
e? 2
Z3=1-— —
i 1272 ¢

in the minimal subtraction scheme.

6.4.4 The electron self-energy X(p), Z, and 7,

The free inverse fermion propagator is

(SW) = —i(p +im)
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Let us write the inverse propagator, including radiative corrections, as
Spt = —i(p+im + S(p)) (6.115)

Y(p) is the fermion self-energy part of the propagator, and from the Feynman rules and
fig. 5 gives

ik 8, .. 1 e
—iX(Plapg = /(%)d ﬁ (2€7)ay (m) (i€7u)sp

_ ddk % i(P— K) + m)Vulas
- ° M/ kE2((p — k)? + m?)

(6.116)

We should note here that the propagator Sr is gauge dependent, contrary to I, (p).
The calculation will depend on our gauge choice, reflecting that the propagator itself is
not a physical observable. There we will only be interested in the aspect which concerns
renormalization, and to simplify the calculations as much as possible we will always use
the Feynman gauge, as is also done in (6.116).

Again we introduce a Feynman parameter o and make a shift £ = ¢+ ap of momentum

n (6.116):

- :—e:“/ / Wu (=) #= Al + o

A1
d (2 + a(l — a)p? + am?)? (6.117)

The linear term in ¢ drops out and from the trace identities we get: v, pvy, = (—2+¢) p.
Integration over ¢ leave us with

2

— )l -a)ip—(4—em

—iS(p I(c/2) / da 6.118
= (4m /) o1 — a)p? + am?) /(47 u?))"? (G115
The pole part can readily be extracted:
. et 2 .
—i2(p)| g = Z(47r)2 - (p+ idm) (6.119)
This part can be cancelled by counterterms:
2 2 _ 2 2 _
oV = Zgpp— g2 6.120
P (47_‘_)2 gdj ﬁd) (47T)2 e md”/) ( )
in the renormalized lagrangian and we conclude that
e? 2 e? 2
Zy=1-— — Zm=1—-4 - 6.121
2 (47)2 ¢ (47)2 ¢ (6.121)

6.4.5 The vertex correction and 7,

We denote the radiative correction to the “free” vertex FL )aﬂ = —i€(Yu)ap by FLI;)Oéﬂ(q; D1, 02)

(where ¢ = p, — p; by momentum conservation). From the Feynman rules and fig. 5 we
have:

rY (g prpa) = / A% Sy [ ' e L
pos\BPUP2) = [ oma T "= frim M ftim

(6.122)
af
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or
Ak Voli(Bot ) +mlyuli( i+ ) +mlvy,
2m)? k?[(p2 — k)* + m?][(p1 + k)* + m?]
The same remarks apply here as did for the fermionic self-energy: FE})(pl,pQ) is gauge
dependent. We here use the Feynman gauge.

As in the scalar case we have to introduce n — 1 Feynman parameters if the 1-loop
diagram has n propagators and after a shift £ = ¢ — pya; — poas we get

1 l—ag d’q
1 _ -~3
F/(L )(plaPZ) = —1e [] dO[l A dO[Q / (27r)d X

Vwli(d+ (1 — ) po— o pr) +m]yli(d + (1 — o) pr — a2 Po) + mly,
[¢2 4 o1 (1 — a1)p? + az(1 — a2)p3 — 2p1peciag + (ay + ag)m??
(6.124)

T (g5 p1,p2) = —ié” / (6.123)

We see that only the term quadratic in ¢ in the numerator leads to a divergence in d = 4.
We split FE}) in two parts FE}“) and FE}”), where FE}“) contains the terms quadratic in ¢ in

the numerator and FE}”) the rest.

1 - d'q (WY VuV87) el
[(i0) - ”3/ d / d / Flononpups v
u' (pipz) =€ | doy | "] @m® [+ Flar, 0z, pr, po) P (6:120)

where
F(ay, a9, p1,p2) = a1 (1 — aq)p] + aa(1 — ag)ps — 2pipaciag + m*(ay + o) (6.126)

As in the case of the photon self-energy the integration over g,z produces a factor d,3¢*/d
by symmetry. From the trace identities we have

YW YaVuTVaYo = (2 — d)*v,

and we get

2

. 1 - 2—d)? 1 d q
o o /d / o / 6.127
w' (Prp2) = i€, | don | @2 T (2m)4 [¢? + F(on, az, p1, p2)]? (6-427)

It is seen that Fl(}“)(q;pl,pg) ~ 7, and that the divergent part of FE}“) (q; p1p2) is

2
(1a) (. et 2
L (q,phpz)‘dw = 26%—(4@2 6 (6.128)

since it comes entirely from the following part of FS“):
1 1—a (2 — d)2 ddq 1
53
1z do / do . / =
%/0 "o tod (27)? [¢* + F (a1, az, p1,p2)]?
i€ (2 —d)?

1 l1—-ag
. —e/2
47)(1/2 T d F(5/2)/0 do‘l/o day F(ou, az,pr, p2)

T

The pole part of this expression is given by (6.128) and we can cancel it by adding a
counterterm
e? 2

5L, Ay = l(47r)2 g] ey Ay (6.129)
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to the renormalized lagrangian. This means that

e? 2
Zy=1-— - 6.130
! (4m)? € ( )
For further reference we note that FE}”) is given by
3 1 1—ay
) e / d / day X
L (p1,p2) Z(47r)2 0 o1 o ¢5)

Y [i (1 — o) po— a1 pr) +m]y, [0 (1 — 1) pr — o Po) + m] v,
F(alaa27p17p27m)

(6.131)

where we have taken the limit ¢ — 0 since FE}”) (p1p2) by definition is finite in this limit.

6.5 Physical applications

We want to discuss some of the physics contained in the one loop results derived so far.

6.5.1 The vacuum polarization

Recall from classical electromagnetism that the effective action in a material with a di-
electric constant € # 1 and a magnetic permeability u # 1 is given by

1 1
Ses1B,B] = 5 /dt/d3x(eE2 _BY) (6.132)
1
The velocity of light in such a material is ¢paperiar = 1/4/€¢ and the response to external
currents J, is changed because of the polarizability of the material. For instance Coulombs
law in the presence of such a material is changed to:

62

——4
dre|Z| "

e AL (7) = (6.133)
A more general expression than (6.132) involves a frequency dependence of the dielectric
“constant”: € — €(w).

Let us assume that the material is such that we can define a dielectric function €(w, E)
as the ratio between Fourier components of the displacement field D; and the electric field
E; (independent of direction i):

e(w, k) = D(w, k)/E(w, k) (6.134)

=

and similar for the permeability function pu(w, k). In that case we would get

1
p(w, k)

and the modified Coulomb law would in momentum space look like:

|B(@, k)| (6.135)

S.r¢[E, B] = %/ Z—:/ (;ij:;g [e(w,ENE(w,k)lz—

eAgoulomb(E) — 46745% (6.136)
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We remind the reader that expressions like (6.135) are only effective expressions valid in
a certain frequency range, but we will show that the vacuum itself behaves very much
like a material with €(k) and u(k) # 0, only is €(k) - (k) = 1 since the theory is Lorentz
wnovariant.

The effective action

F(Ad, &cl, ,l/)cl)

,‘;cl:,wcl:o
has a general expansion

1 1
F(Acl) _ 51—\ AclAcl 4 szklAzglAglAzlAlcl 4. (6137)

In this expansion ;. ;, = O(e*") (n > 2) and to order O(e?) we only have to consider
the term quadratic in A. Recall that

Iy =Gy = (G5! + 11 (6.138)
which allows us to write
c d4 ; _ .
@) = S / ACD (k)G L (k) ALD (k) (6.139)

1
Goik) = GO (k) Ty (k) = (K0 = kiuki) (L4 TI(K)) + — ki, (6.140)
This expression looks gauge dependent, in the sense that it seems to change under a gauge
transformation A( (k) — A (k) 4 k,A(k), but it is not the case if A is generated by
an external current J, which satisfies current conservation:

0,J, =0=T1C (1 4+ I1(K*) ALY (= k) (K6, — ki) ALY (6.141)

v

The proof follows from the fact that all coefficients in the expansion (6.137) are trans-
verse, i.e. vanish when contracted with k,, except the gauge fixing term 1/ak,k, which
multiplies A, (—k)A,(k), as shown in the section which discussed the Ward-Takahashi
identities. This leads to

by = kol = Lp2g @ (6.142)

pep T M(SAZZ - o [V} .

and we see that k,.J, = 0 implies kuAEfl) = 0. For further reference we note that in the
truncation (6.141) we have

Jy=G AD or  AN(k) =G, (k) ], (k) = (6.143)

where the last equation is correct if k,.J, = 0.

It is now an appropriate time to rotate back to minkowskian spacetime since we want to
compare with real physics. This is done simply by replacing 0,, — ¢, in (6.141) and
we see that A*(—k)(k%g,, — k.k,)A”(k) can be written as E;(—k)E;(k) — Bi(—k)B;(k) in
(6.141). We can now write

re) = 1 Z’;U %(Hn( %) (|E(ko, K)? — [Bko, K)[?) (6.144)
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A comparison with (6.135) leads to the conclusion

(k) = (k?)

and further eq. (6.143) in the case of a static external charge e leads to

=1+ I1(k?) (ie. e(B*)u(k*) =1) (6.145)

62

e AV (K, ko) = =———— - 2706 (K 6.146
o (k, ko) B ) (ko) (6.146)

since J,(z,t) = e 0®(2)8,0 and J,(k) = 2med(kg)d,0. This should be compared to
(6.136).
Let us recall that TI(k?) in M S is given by:

62

Mk?) = —— [%Jr/ol do (1 — @) In

= (6.147)

Ea(l —a) +m? — ie
A7 p?

where the ie indicates that we have rotated back to minkowskian space. For k? = k2 we
can drop the —ie and we see that II(k?) is a decreasing function of k*. Loosely speaking

we have the relation )

IR
between distance from the charge e and momenta k in (6.146) or (6.136), and we see that
Coulombs law is modified in such a way that

|_)|

X

62

- 1
N (6.148)
1+ I1(k2) r

esz(r) ~

This is screening. The polarization of the vacuum makes e¢Z;(r) smaller as r — oo.
Especially we get

62

elpr(r — o00) = TIT0) (6.149)

As discussed in chapter 5 we have the freedom of performing finite renormalizations.
Since e.sp(r — 00) is effectively the charge we observe it is very convenient to choose the
renormalization parameter g such that

T1(0) = 0 (6.150)

With this choice we can identify the ordinary electrostatic charge e in low energy ex-
periments with the renormalized charge e in our lagrangian L7 (A, 1,1, m,e) and we

have
e? 1

I(k*) = — (6.151)

kZ 1 — 2 _
da(l — a)aln ( a( a);— m ze)

212 Jo m

Note that when —k? > 4m?, TI(k?) has an imaginary part:

Im I1(k?) = % /01 da(l —a)a 0 (a(l —a)+ %2)

e? 2m? 4m?2 4m?
- (1— = >\/1+?9<1+?> (6.152)
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The interpretation of this is precisely like the interpretation of the imaginary part of the
dielectric function €(w). In that case the material is able to absorb electromagnetic energy
(and eventually convert it to heat). In this case electromagnetic energy disappears too:
it is converted into real electron and positrons since the condition —k? > 4m? means that
the virtual photon with k2 carries sufficiently energy to put the electron-positron pair in
the virtual fermion loop responsible for II(k) on their mass shell, i.e. make them real
propagating particles.

For a given electromagnetic field we can use (6.144) to calculate the total pair-creation
rate since

2

_ ¢ / d'k 2m 4m? 9(1+4m2
247w k2

cl

) (IE(R) = |B(R)I*) (6.153)
Recall that the minkowskian path integral has the interpretation as vacuum to vacuum
amplitude in the presence of external sources .J, (which generates the A{):

(0[0), = Z[J] = A IHACD (6.154)

The decay rate of the vacuum in the presence of the external source .J is given by the
square of the vacuum to vacuum amplitude and the rate of creation of electron-positron
pair is therefore given by:

R=1-[(0)0),]> =1 — e MM & o1 P[4 )] + O(e?) (6.155)

We note that pair creation is entirely an electric effect. A given four momentum k,
contributes only if k2 < —4m? < 0. This means that we can find a Lorentz frame where
k = 0 and since the magnetic Fourier component is given by

—

B(k) = —ik x A(k)

the magnetic component vanish in that frame. A pure magnetic field will not be able to
create pairs. This is in accordance with classical intuition since a magnetic field cannot
perform any work on charge particles as the Lorentz force is perpendicular to the velocity.
Energy conservation would be violated if such a field could create particle pairs from the
vacuum.

Let us end this section by actually converting (6.146) to a modified Coulomb potential in
Z-space. For this purpose it is convenient to rewrite eq. (6.151) for TT(k ?) as®

- e -, [ dg? 1 2m? 4m?
K2y = — k2/ 'l S L Y P 6.156
(k%) 1272 am? 2 G2+ k2 ( + q? ) q2 ( )

To order e? we have from (6.146):

() /72 o i B 72 T
A (E ko) = = (1= 11(k 2)) 276 (ko) (6.157)

6We leave it as an exercise to show the equivalence between (6.156) and (6.151) for —k* < 4m?.
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After Fourier transformation we get:

d3k —ik-T 2 . 00 d2 1 9 2 4 2
APE ) =e [ <1+ - (Hﬂ) 1—ﬂ>

(2m)® |2 1272 am? @* g2 4 k2 q? q?
(6.158)
We now use (r = |7]):
/ d3k e—il;:i:’ B 1 / d?’k 6—1’]3-9? B e~ (6 159)
(27)3 k2 dmr 27m)3 2+ k2 dmr '

and we can write

2
() (= _ € € o0 du —2mru 1
A (@1) = Amr (1 + 672 /1 u2 ¢ (1 + 2u? w1

e 62 672mr
= — 1+ = s+ for mr>>1

47 16 (wmr)3/?

© (14 1 const + f <1 (6.160)
= — ——1n const + - - - or mr :

drr 1272 (mr)?

According to our discussion above we have chosen the finite renormalization of I1(k?) such

that Al (#,t) = 1= for r — oo and we see that the potential increases relative to the
Coulomb potential as r decreases. The interpretation is that the “bare” charge ey is larger
than the measured charge e, due to the polarization of the vacuum by virtual e™e™ pairs.
The factor multiplying e/47r in (6.160) actually diverges as r — 0 indicating an infinite
eo, but we can not trust this lowest order calculation unless €?/1272 In 1/(mr)? < 1.

6.5.2 The anomalous magnetic moment of the electron

The classical relation between (orbital) the angular momentum of a point particle with
charge ¢ and the magnetic moment is

i = %E (orbit) (6.161)

while the contribution from the electron spin S is given by
e = e | =
i=—S=g(=—)S 6.162
i=—5=4(5-) (6.162)

2m
The factor g, called the Landé g-factor, describes the deviation from classical physics. For
the electron g = 2 (to very high precision). In ordinary quantum mechanics this was just
an experimental fact. It was one of the non-trivial predictions of the Dirac equation that
g = 2 and it is a highly non-trivial prediction of QED that there are radiative corrections
which change this value from g =2 to (a = %)
g = 2 (1 4 0.328478445(2)2 + 1.18311(2)F + - )
27 s T
= 2(140,0011596 52359(282)) (6.163)

while the experimental value is

g =2 (1+0.0011596 52359(200)) (6.164)
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It is a remarkable fact that g can be measured with this precision and the agreement
between experiment and theory is most impressive.
Let us recall how the Dirac equation predicts g = 2.

B+m)py=0 = (—DP+mP+m)p=0 (6.165)

A little algebra using i[y,, V,]/2 = 0y, and [D,,, D,| = —ieF),, leads to
[~D? + m? — g oM b = 0 (6.166)

We see that the difference between a scalar particle minimally coupled to A4, and a spin—%
particle, also minimally coupled, is manifest in the term £o#”F),,. In the case of a constant
magnetic field B this term is

- g o F,, =—ei-B=—25 B (6.167)
This term precisely explains the non-relativistic result (6.162). If we solve (6.166) for

weak fields where e B < m? we get for the energy eigenvalues:

E?pmor = E?calar —2e § g (6168)
Espinor ~ Escalar - 3 5 ' é - Escalar - ﬁ . é (6169)
m

In (6.168) and (6.169) S is a vector rather than a spin matrix as in (6.167).
It is possible to add a gauge invariant term to the Dirac equation which changes the
magnetic moment of the spinor % particle to an arbitrary value:

Lfer(,&az/)aA) = —1/;(@+m)1/)
S B+ m L (o Fy (6.170)

This so-called Pauli term would change the calculation (6.169) into:
e = =
Es inor ~ Esca ar — 2 A — S'B 6.171
,, o — (2 Ag) (6171)

It would not be pleasant to have such a Pauli term in our fundamental lagrangian in
order to explain the observed value (6.164) even if Ag would be as small as 0.0011 - - -.
The reason is that the term does not correspond to a renormalizable interaction. The
dimension of the coupling constant e/m is the inverse of mass and QED would not be a
renormalizable theory. If we discard the presence of such a term in the bare lagrangian
our only chance is that it is generated (as a finite term) in the effective action I'(A, 1, ).
In that case the value Ag is uniquely fixed and the theory should be able to predict the
observed value. We will now show that it is indeed the case.

In sec.4 we calculated the first order radiative correction to the “free” vertex FST)W =

_ie(f)/u)aﬂ .

Lyap(Pr,p2) = F%ﬂ + Fs,zlg (p1, p2) (6.172)
where (1) (1a) (1b)
1
Lpos = Dpas + Diuas (6.173)
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and FSZ)B X (Vu)ap while Fl(};l;)ﬁ was ultraviolet finite and given by (6.131). As for the
vacuum polarization it is now time to rotate to minkowskian spacetime since we want to
extract real physics. In order to simplify the calculations let us further assume that the

external momenta ¢, p; and p, are on the “mass-shell”, i.e. that they satisfy

¢ =0, pi=m?’ pi=m (6.174)

and let us calculate Fg?ﬁ (p1, p2) when dressed between two spinors ¢ (p;) and ¢ (pg) which
satisfy the Dirac equation:

(—i po+m)(p1) =0 , (=i po+m)ip(ps) =0 (6.175)

In order to calculate ) (p2)I'(Z?)(p;) we have to calculate

Y(p2) v [1 (1= az) po —ar p) +m] 7y, [i (1 — a1) pr — s p2) +m] 9 (p1)  (6.176)

under the constraints (6.174) and (6.175). In order to use these constraints we have to
commutep v, and po, and in the same way p; and 7,. In this process we will create
commutators [y, v,] = —2i0,,. After a nasty bit of algebra, which we leave as an exercise
to the reader, (6.177) can be written as (¢ = ps — p1):

¥ (p2) [mQ% ((a1 +ag)? —2(1 —a; — 042)) +18m q"ou (0q — az(ay + aZ))] Y(p1)
(6.177)
Further the denominator (6.126) simplifies drastically due to the constraint (6.174) :

F(on, a2, p1,p2,m) = m2(a1 + a2)2 (6.178)

This leaves us with the final expression for the part of @Z(pz)FLI) (p1,p2)Y(p1) which involves

O

P(p2) TV (pr, p2) o (p1)

~O Y
ied - 1 l—on a; — ag(a) + as)
= © e doy [ d
sz VB Vi) [ o [ day SR
- 3
1€ -
= Ww(pz)%qu(pl) (6.179)

(6.179) will contribute to the effective action I',(A,, ), ) with a term:

o 0 A ) (6.150)

or in position space ,
s [ d'e d@)ou P (@) (6.181)
If we compare with (6.170) we see that it corresponds to an anomalous magnetic moment
Ag::—;:% : az% (6.182)

This is the first term in the expansion (6.163) mentioned above.
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6.5.3 The Lamb shift

The Lamb shift (the lifting of the degeneracy between 2512 and 2P/, orbits in the
hydrogen atom) convinced in the begining of the 50’ties many physicists about the reality
of radiative corrections in quantum field theory, in spite of the conceptional difficulties of
the calculations, leading, as we have seen, to infinities. In this section we will only sketch
the ingrediences in the calculation.

Recall that the non-relativistic energy levels of the hydrogen atom are obtained from the
Schrodinger equation

l_% (W + ror g2 > - ;] Un (1) = €nithny(r) (6.183)
where
62
“=n (6.184)

The mass m is the reduced mass of the electron-nucleus system, which is approximately
equal to the electon mass:
— =+ — = —. (6.185)
mo M. My M,
The famous solution, a triumph for early equantum mechanics, was

mao
Enl = —
2n?

(6.186)

and numerically the Rydberg constant ma?/2 = 13.6eV. The important point for us to
note is that for a given n the angular momentum variable [ can take values 0,1,...,n—1,
and each level is therefore 35 (2] + 1) = n? times degenerate.

The next triumph came from the predictions of the Dirac equation. Recall that the spinor
1 will satisfy the equation:

— @ -m)P+m)yp=0 (6.187)
or
(=D +m* — go””FW):Z) = 0. (6.188)

In the case of the coulomb potential of the hydrogen atom we have

(6 722 € . O'Z"fi
edo=——, ebi=——, —o"'F,, = Fia 5
r T 2 T

(6.189)

where 7 = 7/r, 0; denote the Pauli matrices and where we in the last equation have used
a representation of the y-matrices where

o1 [ o 0
00 _ = 1,0 0] — 7
o' = 22,[7 '] 2( 0 —o, ) : (6.190)

If we use a stationary ansatz

D@ t) = e Flape(r, 0, ) (6.191)
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we get

02 290 L? —a?+iao;r;  2aF
— =+ == L — (E* 2 = 0. 6.192
[ <8r2+7"37">+ r2 r (7 +m7)| s ( )

The total angular momentum J=L+S5= E+6/2 is a constant of motion and commutes
with L?, the square of the orbital angular momentum, which is also a constant of motion.
We can thus label energy eigenvalues with / and j. In the subspace where J? = j(j + 1)
and J, = m the integer [ in L? = [(I+1) takes the two values [ = j+ 3 and L? — o* +iao;7;
becomes a 2 x 2 matrix with eigenvalues A(A + 1), where

1 1 1
)\i:ji——éj, 5j:j+—— (j+—)2—a2. (6193)
2 2 2
With this result the equation is formally the same as the Schrodinger equation (6.183)
after a few substitutions:

L? — L[?—a%+iaor
(1+1) — AXA+1)
a — aF/m
e — (E*-=m?/2m
Therefore the energy levels are given by
En_ _ 2 2 EQ' 1
S TN g (6.194)
2m 2 m? (n—9¢;)?
or 2 4 4
m mao mao 3 mao
E,j=———=m-— — - O(a® 6.195
T e v Ts T o) (6.195)

(n—0;)?

with n =1,2,... and j = 1/2,3/2,...,n — 1/2. What should be noted here is that the
n?-fold degeneracy present for the non-relativistic Scrodinger has been lifted due to the
term ma?/(n3(2j +1)). This splitting is called the fine structure. If we use the standard,
non-relativistic spectroscopic notation nl; (e.g. 25/, or 5P;/,), which is possible since /
and j are constants of motion, we have for instance:

ma4

E(2Py)) — E(2P1j9) = =4.5-10"eV = 10.9GH 2. (6.196)

Note that we still have a degeneracy for a fixed value of j corresponding to the two values
of [ (I = j+1/2) which could lead to the same value of j. For instance:

E(25))2) = E(2Py)2). (6.197)

Before one can compare with experiments several effects should be taken into account.
One is the finite size of the nucleus (the proton in our case). This will shift slightly the
energy levels of s-waves where ¢)(0) # 0. Next a correct treatment should also include the
recoil of proton. Further we have neglected the magnetic field induced by the magnetic
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Figure 6.6: Low-lying energy levels in the hydrogen atom

moment of the proton. All of these effects can be treated semiclassically to the desired
approximation and we will not discuss them further, except for noting that the interaction
induced by the magnetic moment of the proton:

Vi = _%(;ge)Bi, (6.198)

where B; is the magnetic dipole field from the proton and azge) /2 the spin of the electron,
gives rise to the so-called hyperfine splitting of each electron energy level of a typical size:

AEw;(S) =5.9-10 %V = 1.4GH > (6.199)
The lowlying energy levels now have the approximate form shown in fig.6.

One puzzle remained, the shift of 1057 MHz between the energy levels 25,5 and 2P, s,
which modifies (6.197) to

E(25))5) = E(2Ps) + 105TM H 2. (6.200)
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Figure 6.7: The lowest order radiative corrections to the Coulomb potential

This energy difference, called the Lamb shift, was explained by the radiative corrections
coming from the electron interacting with the quantum fluctuations of the electromagnetic
(coulomb ) field surrounding the proton. In fig.7 we have shown the lowest order quantum
field corrections to the Coulomb potential. This means that the elementary interaction
ey, A, which we used in the Dirac equation has to be replaced by:

evu A, — (e, + Ty + 11, G ) A, (6.201)

where I', and II,, in principle have been computed in the proceeding sections. The
modified Dirac equation reads:

[0+ m —i(ey, + T+ WG ) A v =0 (6.202)

In order to be consistent with a lowest order calculation the added term should only be
taken into account to first order and ordinary lowest order perturbation theory is sufficient
for calculating the corrections to the Dirac levels. We can identify three contributions:
(1): the one coming from the vacuum polarization, (2): the part of I', proportional to
owq”, which was also responsible for the anomalous magnetic moment, and (3): the part
of I, proportional to ,. The last part is the nasty one. It contains infrared divergencies
when the external lines are on the mass shell. The reason for this is that the photon
is massless. It is impossible to distinguish between an electron and an electron with a
very low momentum photon, and one first get a finite result when an integration over
photon energies in a finite energy range is performed. In the case of the hydrogen atom
the infrared cut off which dictates the energy resolution is determined by the Bohr radius
of the atom. For longer wavelengths the radiative corrections (6.201), which were derived
under the assumption that we have a free electron in an external field, must be modified
to take into account the bound state nature of the electron.. We will not discuss this
calculation in detail, but have to refer to other, more extensive textbooks. However, the
main effect comes from this term, namely 1010 MHz of the observed 1057 MHz. When
we include the contribution from the anomalous magnetic term we add further 68 MHz
and the 2P /5 has now been lowered too much compared to the observed value. But the
vacuum polarization will clearly lower the S state relative to the P state due to screening
and the amount is 27 MHz, which leads to a total of 1051 MHz, in very good agreement
with experiment. By taking into account higher order radiative corrections this number
is increased to 1057.864 + 0.014 MHz (Mohr, 1975), while the present experimental value
is 1057.86 = 0.02 MHz (Andrews and Newton, 1976).

It should be clear from the above discussion that QED is an unusually succesful theory.
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Chapter 7

Quantization of Gauge Theories

7.1 Definition of the functional integral

The problems with the definition of the functional integral for non-abelian gauge theories
is the same as for abelian theories: Due to gauge invariance the action is stationary under
the space-time dependent gauge transformations U (x)

Ay(z) = YA, () = U(x)A,(z)U (x) —i0,U(x) U (). (7.1)

(For a detailed discussion of theses non-abelian gauge transformations we have to refer the
the chapter on classical gauge theory). This large invariance means that the functional
integral is ill defined. An analogue for an ordinary one-dimensional integral would be to
integrate a periodic function from —oo to +00. The way we get around this difficulty
will be very similar to the approach in the abelian case. We fix the gauge, which in the
analogue with the periodic function would correspond to integration over only one period.
It is, however, done in such a way that gauge invariance of physical observables is manifest
at each step.

Let us fix the notation (for a more careful discussion of non-abelian gauge groups we
again have to refer to the chapter which discusses classical gauge theories). We denote the
gauge group G. The elements of the group will be denoted U. The local gauge invariance
we have in mind means that there is a group of gauge transformations associated with
each space-time point. In this way we can formally say that the total invariance group is

Gino = [[ Gs (7.2)
rER]

The gauge fields A, are elements of the Lie algebra associated with the group G-
A, = AT (7.3)

where T'* are the generators of the Lie algebra. We will denote the Lie algebra associated
with the (Lie) group G by G. For a given group G and a given representation R of the
group the elements U will be N X Ni dimensional matrices and the same will be true
for the generators T'* of the Lie algebra G, since the connection between elements in the
group and in the algebra is given by the exponential map (which is 1-1 in a neighbourhood
of the identity element of the group):

U=e""" a"€eR (7.4)

175
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We can choose generators T'* such that
[T5, Ty = ic™™ T, (7.5)
Tr TeTh =Tré™, > (TE)? = Crl. (7.6)

a
Cg is called the value of the Casimir operator in the given representation of G. If Ng
denotes the order of the group, i.e. the number of generators in the Lie algebra, we
obviously have, by taking the trace in the last equation of (7.6)

TeNg = CpNg (7.7)

The constants ¢%¢

Ng X Ng matrices

are called the structure constants of the Lie algebra G. We can define

(T) e = ic™™ (7.8)

and these matrices satisfy themselves (7.5), which in this case is becomes the Jacobi
identities for the Lie algebra. The Jacobi identity for arbitrary generators in an arbitrary
representation can be written:

(7%, [T°, T + [T°, [T, T + [T¢,[T* T"] =0 (7.9)

and expresses that the associativity of the mapping G x G — G defined by the (A, B) —
[A, B] for A;B € G. The matrix representation of the Lie algebra (and the induced
representation of the group G) defined by the structure constants ¢ is called the adjoint
representation of the algebra G (and of the group G). For the adjoint representation we
have N = Ng and T = Cr = Cy(G). For SU(N) we have Ng = N? — 1 while Ny = N
for quarks in the fundamental representation. The usual normalization of T for quarks
is Tr = 1/2 and we get Cr = (N? — 1)/2N, while the value of Cy(G) = N. Usually we
think of G = SU(3) as the color symmetry group. However, in grand unified theories
(GUT) one considers more complicated groups like SU(5), SO(10), Es etc, in an attempt
to unify all known interactions except gravity.

If we want to couple the non-abelian gauge field the matter fields we assume that these
matter fields transform in a definite way under the action of the gauge group:

Vi(x) = (Up)i (7)1 (z) (7.10)

where U; will be Ny x Ny dimensional matrices which form a certain representation of
the gauge group G, and we further assume that the original lagrangian of the ¢-field is
invariant under the action of global gauge transformations of the kind (7.10), i.e. trans-
formations where the Uy’s are independent of z.The so-called minimal coupling, which
makes the lagrangian with matter fields invariant under the local gauge transformation
(7.10), is obtained by simply replacing the ordinary derivatives with covariant derivatives:

Ouibi(w) = (Dp)ijts(x) (7.11)

where
(Dy)ij = 0u6ij — ig(T})ij A () (7.12)

In this formula g denotes a gauge coupling constant which we will discuss further below.
In the case of the adjoint representation we have

D = 9,6” + g™ Ay, (7.13)
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and we note for future reference that for an infinitesimal gauge transformation
Ulz) = 9" @ ~ 1 4 iga(z)T® (7.14)
we have
Al(z) = Al(x) + DI o (). (7.15)

If we specialize this to the case of space-time independent transformations it shows that
the components A* transforms as a vector in the adjoint representation under space-time
independent gauge transformations, a fact which also follows directly from the transfor-
mation (7.1), if one is familiar with the more abstract group-theoretical definition of the
adjoint representation.

The lagrangian non-abelian (or abelian) gauge theories is given by

1

L(A,) = - Tr F, (7.16)
where we have introduced a coupling constant g such that
F.=0,A,—0,A,—glA,, A (7.17)

and where we have used the notation (7.3) for the gauge field and further assumed that
the normalisation of the generators has been chosen such that Tk = 1.
The gauge invariance is now:

A = U(2) AU () - é(aﬂU) U (z) (7.18)

If we compare with (7.1) it differs by the coupling constant g. Sometimes it is convenient
to absorb the coupling constant in the definition of the gauge field A,. It that case g
would be absent in (7.12),(7.13),(7.17) and (7.18), but would appear in front of (7.16) as
a factor 1/¢°.

As always we imagine that a rotation to euclidean space has been performed when we
want to define our path integrals. The same remarks apply here as in the abelian case:
The rotation x4 = 7 = it should now be supplemented with a rotation of Ay , the time
component of the vector potential, if we want to keep £(A) real. Since A, transforms in
the same way as x,, it is natural to rotate Ay as xy. The "electric” field will then be given
by

: P P . :
E(Euclzd) — A — A, = .E(Mznkowskz) 719
! 8274 8£UZ ! i ( )
and the action will be
LEuelid(A) = iTr F = %Tr (E* + B?) (7.20)
S(Euclid) [A] — /ddl‘ £Euclid(A) (721)

We can formulate the quantization problem precisely as we did in the abelian case: We
define expectation values by the formal expression:

_ DA S O(4) -0, (4)

< OI(A) o 'On(A) > [DA e—5SI[A]

(7.22)
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where O1(A) ---O,(A) are gauge invariant observables. As discussed in the chapter on
classical gauge theories the path-ordered integrals of various kinds constitute a complete
set, of observables. However, they are difficult to use in practise and we will in the end
consider Green functions which, (as already seen in QED), are strictly speaking not gauge
invariant, but which can be used in intermediate steps toward constructing gauge invariant
quantities. In the following formal arguments we assume nevertheless that the O’s are
gauge invariant.The action S[A] is defined by (7.21). We now want to show that it is
possible by, a number of formal manipulations to write both numerator and denominator
as a well defined functional integral times a formal product

[ V(©G), V(G = /G U (7.23)

rERI

where V(G) denotes the ”volume” of the compact gauge group G, and the integration
in (7.23) is over all group element. The measure dU is the unique measure' on the
group manifold which is invariant under left- and right translations, i.e. U — UyU and
U — UUp. It is called the Haar measure. The infinite product [J,cze V(G) is indepen-
dent of any dynamics and cancel between numerator and denominator. The remaining
integrals are well defined and can be treated as we did for a scalar field (Dyson-Schwinger
equations, perturbative expansions etc.). Heuristically we can say, that we manage to “fix
the gauge”, i.e. to restrict the space of all gauge configurations, C[A] to a submanifold
M| A] where gauge equivalent configurations are only counted once. The integration over
C now factorizes in an integration over M[A], which contains the physics, and an inte-
gration over the gauge equivalent configurations, which just produces the infinite product
(7.116)2. The virtue of this approach is that gauge-invariance formally is manifest (since
we have only factored out a product [I,cres V(G) independent of any dynamics) when we
consider expectation values of gauge invariant observables. Further we will show later,
that if we define the gauge theory on a lattice, we will be led to precisely this kind of
expressions. Since the lattice approach for a finite volume will provide us with well de-
fined finite dimensional integrals, the close relation of (7.22) and (7.23) to the lattice
approach is reassuring. The disadvantage of an expression like (7.22) is that it is purely
formal: Neither numerator nor denominator in (7.22) exist in a strict sense. One could
have avoided this by first defining M(A) by fixing the gauge, but we would then have
lost manifest gauge invariance. We will consider here only the first approach.

The first step is to impose a gauge condition which defines M(A). In general we will be
interested in a covariant condition like

0uAu() =0, A, =AT° (7.24)

in order not to break euclidean invariance. We will denote the general gauge condition
by:
FYA) =c"(x), a=1,---,N (7.25)

'For compact groups the Haar measure is unique up to an over all factor

2Tt should be stressed that it is not precisely want we will due, since we will take an average over
many such gauge fixing conditions. But that is only done for convenience. In principle one could do with
a “genuine” gauge fixing, only will the propagators we get in the end be more singular
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Figure 7.1: For a given configuration A(z) the orbit Or[A] should intersect M][A] only
once

where NV is the number of generators in G. The main requirement for F is the following:
Given an A, (x) we define the orbit of A,(x) by:

Or{A ()] = {Au(2) | TUR) € G+ Aufa) = VDA, ()} (7.26)

where YA denotes the gauge transformed of A defined by (7.18). We assume F® is
chosen such that for any orbit there is one and only one fiu which satisfy (7.25). The
?submanifold” of the configuration space {4, ()} which satisfies (7.25) is denoted M ,
and its relation to the orbits is shown in fig.7.1.

Let us define the following functional of A, (z) (depending on F* and ¢%):

sp = ST T (0 -) (72

where we integrate over the gauge group G at each space-time point z. dU, denotes the
Haar measure on G and Y A(z) the gauge transform of A(z):

A,0) = U@ A, (@)U (@) = S0,U (@) U™ (@) (7.28)

By the assumption made above there exists for a given configuration A(x) a unique gauge
transformation U(z) = U (x) depending on the given A(z) and such that

FoUM 4) = . (7.29)

Let us introduce the following notation:

oF"

M®™(z,y, A) = TDCb(:U; A6 D (z — y) (7.30)
AL (z)
a — 8 a Q,Ci c
D (z; A) = 6—33#5 "+ g™ Al () (7.31)

where Dl‘jb is nothing but the matrix components of the covariant derivative D, in the
adjoint representation. By the determinant det M of M, we mean the determinant in all
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indices: a,b and x,y. The last two indices are continuous, and some regularization will
usually be needed. We will assume that this can be done and refer to example 2 for a

more detailed discussion.
Lemma:

(1) : Ar[A] is gauge invariant
(2):  Ax [A]=det M (U(A)A)

Proof
(1): We use translational invariance of the Haar measure:

dU = d(UUyp).
A"l Uo4] = /HdUwﬂé(f“(U(U‘)A)—c“):

J L= Lo (") ) =
/HdUH5 FoUA) - ) = A1[4].

xT,a

(2): By (1): A(A) = A(U(A)A). Call VYA = A. The geometrical interpretation of A is
the following: For a given configuration we follow the orbit YA until we intersect the
submanifold MJ[A], see fig.7.1. The point of intersection defines both the configuration
A(z) and the gauge transformatlon U (z). By the definition of the gauge transformation
U () we have F*(A) = ¢*. We want to calculate [ [, dU,6(F*(VA) — ¢*), but need

only to expand around Um = 1 (the identity) because of the J-function and F(A)

For such expansion:
U(x) = eio‘a(x)Ta ~ 1+ ia®(z)T* + O(c?)

dU, = Hda )(1 4+ O(a?))

and for such infinitesimal gauge transformations:
Uiva ~ i b A\ b 2
(TA)* = A"+ DP(A)a” + O(a”).

From (7.32)-(7.34) we have:

F (U A)(2) = F(A)(2) +

= c%.

(7.32)

(7.33)

(7.34)

(7.35)
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The last relation is formal and follows from a similar one for finite dimensional real,
symmetric matrices M;;:

[ Tea 1 o
dOzi (5(Mij04j) =
; i det M

which is readily proven by an orthonormal transformation on the «’s which diagonalizes
M.

By means of the lemma we can write (7.27) as
1= / TTav. [detdr (Y A)| T8 (F*(U4) — (y)) (7.36)
T y,a

The presence of the d-functions in (7.36) means that we can replace U™ A with U A where
U, is the integration variable:

1= / TTdU. des M (*A) TT 6 (F(U4) — *(»)) (7.37)

The lhs of eq. (7.37) is clearly independent of ¢*(x). We can then get rid of the d-function
by multiplying both sides of (7.37) with

1a]” = / [] de(a) e~3 J o @? (7.38)

where "1[a]” means that the normalization of the Gaussian integral will depend on the
parameter a. However, again it is a constant independent of any dynamics which will
cancel between numerator and denominator in (7.22). From (7.37) and (7.38):

o] = / [] dU. det M (7 A)e~ 27174 (7.39)

FA| = / dle F(A)Fo(A) (7.40)

We can finally insert the constant ”1[«]” in our formal expression (7.22) for expectation
values of gauge invariant observables. We have

/ DA S — / DA / T] AU, det M (U A)eSlA1-3=7717 41

- /HdU’”/DA det M (U A) e=SWAI=2 710 A)

By the gauge invariance® of DA and the gauge invariance of the Yang-Mills action S[A]
we can change integration variables to YA and we get the wanted factorization of the

gauge group:

: / DAe S 3277141 det M (A) (7.41)

[ Daesia - [ [TLav.

3A gauge transformation (7.28) is a rotation + translation of A,,, therefore DA is invariant
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The same argument is clearly true for the numerator in (7.22) because of the assumed
gauge invariance of the observables O,,(A) and the gauge group factor |[ 11, dU,] cancels
in (7.22):

- DA I, Oy(A) e=SersAl

) 1:11 i) >= [DA eSerilA (7.42)

SegslA] = S1A]+ ;fZ[A] — log det M(A) (7.43)
(0%

These formulae represent the final result of our formal manipulations. We have managed
to get a cancellation of an infinite factor between the numerator and denominator and
SerflA] will have a gaussian part which is invertible. S,f¢[A] is of course no longer in-
variant under local gauge transformations, but since our starting point (7.22) was gauge
invariant we expect that expectation values of gauge invariant operators should still re-
spect gauge invariance even if they are calculated by means of an action which is not
gauge invariant. In section 7.7 we shall see that (7.43) has a very interesting symmetry
which resembles local gauge invariance sufficiently to insure the gauge invariance of the
perturbative expansion generated by Ses.

Before we state the Feynman rules it is convenient to rewrite the term logdet M (A).

7.2 (Gaussian propagators

The determinant term in (7.43) pose a slight problem for perturbation theory: It is non-
local. This means it is an infinite series in the coupling constant. To be more explicit let
us discuss the case where F*(A) is given by:

F(A) = 9,A° (7.44)
From this we get that the "matrix” M(A) is given by
M (z,y, A) = 0,D5(x — y) = (926" + g0, A (2)) 6(z — y) (7.45)

It is convenient to divide by a trivial factor det 9? which has no reference to the dynamics:
If we as usual denote 972 as A(z — y) we get:

det M(4) _ [M(A)

s 7] = det (1+ L) (7.46)

where the "matrix” 1+ L, which is strictly speaking the kernel of an operator, is given by

(1+L)*(x,y) =6 (x —y) + g / d2A(z — z)aic“CbAZ(z)(S(d)(z — ) (7.47)

e

We now use the following rewriting of a determinant, which can easily be checked if we
can diagonalize the matrix, but which is valid under more general circumstances:

det(1 4 L) = ™ leel+L) (7.48)
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Finally the power expansion of the logarithm gives

00 (_1)n+1
Tr log(1+ L) =Tr Z -~ " (7.49)
n=1 n
and we can write det M(A) 1) "
et © (—=1)"
log————~= =T -~ " .
og Tot 02 T <nz::1 . > (7.50)

This is the effective term which enters in (7.43). From the expression (7.47) we see that
it is an infinite power series in the coupling constant ¢, and for each new order in the
perturbation expansion we will have to introduce new vertices. The trace Tr in (7.48)-
(7.50) means trace over everything: sum over the group indices, and integration over
spacetime points, as already discussed. It is instructive to write out in detail the first few
terms in the expansion (7.50).

Example 2: The power expansion of det M(A)/d?.

Tr log(1 + L) =
—l—g/dzlcaba [A(:L" — zl)—a A(z1)0(z1 — x)}
821
92 abc 4 b cda 9 d
-5 /dzlszc [A(:Jc - Zl)a—zlA (21)0(z1 — 22):| c [A(ZQ - 21)6—,22A (22)0(z9 — )

g3
—{—? /dzld22d23[- . ] — e

The first term in (7.50) vanish since one can show that the structure constants can be
chosen antisymmetric. (recall their connection with commutators).

To circumvent the problem of an infinite set of vertices in the effective action (7.43) we
will use some auxiliary fermionic variables, called ghosts, to represent the determinant as
a gaussian fermionic “path” integral. Recall that we have:

/ DeDG e M9 o (det M)*!

according to whether ¢, ¢ are anticommuting or commuting variables. To represent det A/
we need anticommuting variables which we denote 7, 7. There is a certain ambiguity in
this fermionic representation. For a finite dimensional determinant we have:

N
/H dnidi; ™7 = (£1)N det M
i=1

N
/ T[ dmidii; 577 = (+£0)N det M
=1

Since det M appears both in numerator and denominator when we calculate expectation
values, we can take any of these choices. If we (arbitrarily) choose €™, we get a total

effective action:
FA) = 8MAZ (7.51)
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Sepsl i) = [t (SF8(AP +5-@,40° - 19,00 ) | (152)

We get a similar expression for any function F*(A) only:

1 1
A 2 al A 2 .
S (0,AL)? 5 P (A) (7.59)
] _OF(A)
a ab, b a ch b
n*0uD;’n” — 0 73142 Dy (A)n (7.54)

In the following we will restrict ourself to the choice F*(A) = J,A{ as given by (7.51),
but all the general results we derive will be valid for a general linear gauge condition
F(A) = @ AP (our choice is 3" = 3,0", but other choices like ¢%* = n,d**, where n,, is
a four-vector, have some interest and are denoted azial gauges). Many of the results, but
not all, will be valid for a general F*(A).

Since
Dzb = 8u<5“b + gc“d’AZ (7.55)

i, (A) = 0,4, — 0,A% + gc“bCAZA,Cj (7.56)
the quadratic part of the effective action (7.43) is given by:
_ 1 a a 1 —a a
SO, 7] = [ diuzas {5 b <—825W +0,0,(1 — 5)> } Ab (=0 (7.57)
It follows that the quadratic forms are non-singular. In fact, by Fourier expanding we find

that we have to invert 6°°(k%6,, — (1 — L)k,k,) and this is readily done. The propagator
is:

" w1 k,k,
AW (k) =0 bp <5W —(1-a) 22 > (7.58)
Similarly the ghost propagator becomes:
a a 1
A®(k) =6 ”ﬁ (7.59)

7.3 Feynman rules

Since the gaussian part SP[A,n, 7] of Serr[A, n,7] is invertible, it is possible to define
a perturbation expansion in a standard fashion. S.[A,n,7] — S@[A,n, 7] is called the
interaction:

Simt[A,m, 7] = cabc/ddx [(0 A“)AZAZC, +8u77“AZ770]
+2 g%a”c ade / dig Ab AC AT AC (7.60)

We can now expand e Snt[4n7 in power series in ¢ and make Wick contractions. The
only additional rule, as always when we have anticommuting variables, is that each closed
ghost loop should be assigned an additional (—1) factor.
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We can proceed in standard fashion and define the generating functional for connected
Green functions by:

e~ FIIEE] /DADnDﬁ o= Ser LA+ [ dda(J A+En+g) (7.61)
and the generating functional for 1PI-Green functions:
DA% i) = F(1,6,8) + [ dla(7A + & + 7€) (7.62)

We have the same relations between sources J, , € and the “classical” fields A%, n® 7% as
for the scalar field theories and the abelian gauge theories, except that we have to take
into account the anticommuting nature of n, ¢ and &, &:

OF OF OF

0 =5 O =5y 10 = e (7.63)
) =gy €@ =~ €)=+ (7.6

In order to get the complete set of rules, which allow us to write down the Feynman integral
for any graph which appears in the diagrammatic expansion, we have to know what weight
to assign to the vertices too. The vertex functions are slightly more complicated than for
the scalar fields since A}, have a, p indices and derivatives appear, but in principle the
rules are given in chapter 3, and the recipe is the same: We rewrite the interaction terms
in momentum space and rearrange them as polynomials in A}, and n,7. In the following
example we illustrate the procedure for the three-point vertex.

Example 3: The three-point vertex

dkdipdiq 1 5
g [ ds (0,4 AL A5 = [ ST S ALRIALD) AT (.p. 0

where a Fourier transformation results in the following expression for V:

robe (k,p,q) = (2m)%D(k+p+q) Vis(k,p,q)
Ve (k,p,q) = —ige™[(q —p)udur + (0 — k)6 + (k — Q)00

In this way we can derive all the rules and a list of these is given in fig.7.2. Only
two comments are necessary: The propagators and interactions for fermions (quarks) are
included. They will be introduced later. Next, we assume that dimensional regularization
is used. The coupling constant g will get a dimension as we leave d = 4. However, we
prefer to keep g dimensionless and introduce the scale parameter pu, discussed in detail in
connection with renormalization of the scalar theories. The coupling constant g appearing
in fig.7.2 is therefore:

e/2

g=pu'g, e=4—d (7.65)
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a b §ab k,k,
MW\)’];\/V\J’.V ﬁ(éﬁ“’_(l_a) 22 )
6ab
®----- oo [ ] —
a k b k2

el

a k I} K+ im
v p
q T .
’ ¢ ~iGC™ (1 — q)uSp + (4 = D)o + (0 = 7)u0p,]
g (p+q+7=0)
woa
b v
_g? [Cabeccde((sup(sya _ 51/‘06“0)_'_
ILL p coe aae
a C CereCad (5up5wf - 6Vu5w)+
Cdbeccae((sap(sl/u — (Sypfsug)]
o d
e €
“9“““%“9““ igcabcqu
a b
Mé a
7’@ ‘75 ig(T1)ji(V) par

Figure 7.2: Euclidean space Feynman rules in covariant gauge
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Before starting any calculation it should be made clear that the Green functions which
one calculate by summing Feynman diagrams are not gauge invariant. They do not belong
to the class of observables which we discuss in (7.42). This is clear from the defining
equation for the generating functionals, (7.61) or (7.62). The source term [ d?z.J - A is not
invariant under local non-abelian gauge transformations. The Green functions themselves
are not directly related to physical observables. They are useful quantities when we
discuss renormalization of the gauge theories and they can be used as an important tool
(essentially the only one we have) when we try to extract gauge invariant information
from the theories.

To get an idea of the structure of one loop calculations we will provide some details
for one of the diagrams.

sk
ao _o a'o
Example 4: Calculation of
p =
k—p

The Feynman integral is

ddk ! 1! A ,
/ (274 Vo%)g(l’, k —p, _k)A,cﬁyr(k)VC?, b,,cy,(—p’p —k, k)A,%Qﬁ (k —p)

where the two vertex functions which enters are given by:
Vi (p,k = p,—k) = —ige™ [(=2k + p)adsy + (p + k) ooy + (k — 2p)y dag]

Vo?l,b:,cyll(—p,p — ]{7, ]{7) = —igca,bld [(2]{7 — p)a/65/7/ + (—p — k)ﬂ/éa/,yl —+ (—I{I + 2p),y/(5alﬁ1:|
The propagators are given by:

1 kuky\ o
ﬁ<5w—(1—a)2—2>5”

and in order to simplify the calculation we choose @ = 1 (Feynman gauge), but recall that
the result will be gauge dependent: it will depend on the chosen «. After some algebra
we get:

_gZCabcca’bc / d’k F(k,p)
(2m)* k2 (k —p)?
where
F(k,p) = (—4d+6)koko + (—d+6)papar + (2d — 3) (kapar + karpa) — (5p° + 2k* — 2pk)daur
In deriving this result we have used: o = d. Further we note that c*¢c®b = §99' Cy(Q)
where Cy(G) is the Casimir of the group G in the adjoint representation.
In order to calculate the integral we need to know:
/ dk 1, ko, koka
(2m)? K> (k —p)?

and from the formula of 1-loop integrals already given in chapter 5 we have:

dk 1 re-49HBe—1,4 -1 )
/(QW)d Rk—p? : 2)(4;2)d/2 : )(Pz)”l/2 2= I(d,p)
dk k 1
/ (2m)4 k2(k ip)2 - §pu1(dap)

Ak kyuk, d 1
/@ﬂdeLm2: @@tﬁm%—ggjﬁﬁ%ﬁﬂdm
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In the above equations the B-function is defined by

1
B(z,y) = /0 doa® 11 — )t

and we have
Iz +y)

I'()T(y)

which at the same time provides us with an analytic continuation of the B-function.

B(:E,y) =

Finally, after some algebra, we get:

(—4d+6) B , 4d—6 N\ o .
{ G+ a0+ @i =9 papr+ {575 1] %000
2 2 d/272
(e - -1 4-0) (2

For ¢ =4 — d — 0 the pole term (the divergent part!) is:

2
_gab g (W D 2)2
0 C(G) 1672 < 3 PaPo’ 6 daa’P c

In a similar way all one loop correction to the propagators and vertex functions can be
calculated. We list for completeness the correct combinational weights of the diagrams,
which can either be derived either by making Wick contractions directly or by working
out the Dyson-Schwinger equations as for the scalar case (see chapter 4). Further, the
divergent contributions to the propagators and vertex functions are given. We encourage
the reader to check the results.

Example 5: Divergent parts of one-loop diagrams.

(1): Gauge propagators self-energy

5‘)"\4
1 wu{:j>f\m + 1 vﬁm - u\/\ﬂm
2 2 L

2
Divergent part: _9°G(G) <§ + 1(1 - a))

2
1672 3 2 €

: {p25uu - pupu}(sab

(2): The ghost propagators self-energy

2
: . g°Ca(G) (1 1 2 5w
Divergent part: ez |3 + Z(l — ) ~p 5o
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(3): Three-point vertex

2 2 2
Divergent part: 9 16232%(2(;) [§ + %(1 - Oé)]g . V;ff\(k,P, q)

(4): Four-point vertex

K%MEM%

Divergent part: — — .
vereent p 1672 © 3 e
(5): Ghost-vector vertex

\ 7
W\f\f\/;ﬁ

\\34 +
205(G) a2
Divergent part: J 1627r(2 )% o Vi *(p).
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7.4 One-loop renormalization

We can analyse the divergences in the same way as for the scalar theory. We will be
interested in the theory when the dimension of spacetime is four. The coupling constant
¢ is dimensionless in four dimensions: [¢g] = 0 and according to our analysis this means that
the theory is renormalizable (the fact that we have ghosts does not change this conclusion),
but the question is more complicated than for the scalar theories and the abelian gauge
theories we have considered earlier. The reason is that we want to maintain the invariance
under local gauge transformations. If local gauge invariance is not maintained we have
obviously modified the theory in a drastic way. At the formal level there is no reason
why we should break gauge invariance if we use dimensional regularization. However,
the perturbation expansion itself cannot use the full gauge invariant action but use the
factorization (7.41) and the corresponding effective action given by (7.43) or (7.52) does
not have the local non-abelian symmetry. Further we split the action in a gaussian part
and the rest, which we call the interaction. This split does not respect non-abelian gauge
invariance either. These two bad features of the perturbative expansion complicate the
proof that the theory can be renormalized in a sensible way. In a later section we will prove
that S.rr[A,n,7] has a hidden invariance, the so-called BRS invariance, which ensures
that we can perform a multiplicative renormalization which preserves the gauge structure
of the theory. In this section we will limit ourselves to show that the explicit calculations
of the last section allow a multiplicative renormalization at the one-loop level.

We can proceed as for the scalar theory and classify the diagrams according to their
superficial divergence w(D) of diagram D:

3

2Ey; (7.66)

W(D):4—EA—2

where E4 and FE,; denote the external lines in the diagram. Due to the nature of the
ghost interaction we have an identical number of 1 and 7 lines. This expression (valid
in four dimensions) is the same for the scalar theory except for term %Em—,. The reason
for the factor % is that ghost-gauge field vertex V4™ contains a factor p, proportional
to the momentum associated with the ghost line (see the table of Feynman rules). This
factor is associated with the derivative d, acting on 7 in the term g(auﬁ“)c“bCAch. Note
the asymmetry: the derivative only acts on 7. As half of the external E,; lines in a 1PI
diagram are 7 “lines”, effectively %E,m momenta p; are external momenta and therefore
not effective in the in the power counting of divergences of the loop integral. Consequently
w(D) is reduced with $E,;. Effectively this means: E,; — Ep; + £ E,; in (7.66).

From (7.66) it is seen that the superficially divergent diagrams, i.e. the diagrams D
where w(D) > 0, precisely correspond to the vertex functions in the lagrangian and to
the propagators, as illustrated in fig.7.3.

The 1-loop diagrams mentioned in the last section are the only divergent 1-loop
diagrams according to this analysis and the counter terms which we have to add to
Lerr(A,n,7) in order to get finite 1-loop results is fixed by the above 1-loop calcula-
tion. If we use MS (minimal subtraction) we only have to add pole terms which, as is
seen explicitly from the divergent part, can be chosen as local polynomials in the fields

Al "

0Ly = (Zs—1) =(9,4; — 0,A%)? (7.67)

NN
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N Ip)=2 == 0D)=1

um)=1 0(p)=0 0(D)=0

Figure 7.3: The superficially divergent 1PI diagrams for non-abelian gauge theories

0Lay = (Zs—1)(=7"9"n") (7.68)
0Las = (Z1—1) gdAuc™ A? Ay (7.69)
SLus = (Zoi—1) L= 9L ane cade 4D Ac A9 A° (7.70)
4 B B
- 12D ()
0Laan = (Z1—1) g™ 0" Ay’ (7.71)
From (7.67)-(7.71) it follows that
L+6L = i Z5(0, A% — 0,A%)* + i(a As)?
geeZ, 9,ACALAC + 4 cabecade 7, Ab AC AT AC (7.72)

+Z38u77“ lﬂ] + gc“bc Zl 8u77“AZ77

A priori this lagrange function has nothing to do with the one we started with. Originally
we had one coupling constant ¢, now we have three: Z,g, Z4g*> and Z;g. We can ask: Is
it possible by a (multiplicative) renormalization to regard £ + 0L as a (bare) lagrangian
Lo(Ag, 1070, go, ) (recall the discussion for scalar theories):

‘C(Aa 77]7 n,9, Oé) + (5‘6(‘47 77]7 n,9, Oé) = ‘CU(Aﬂa Mo, 7707907 Oé[)) (773)

From (7.67)-(7.71) and the equations (7.72) and (7.73) we get the following consistency
relations:

Zy (0,A% — 0,A%)2 = (0,48, — 0,A8)? = Ay=Z] A
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~ ~ 1
ZB (3u773;ﬁ7a) = auﬁgang = Mo, Mo = Z32 n, N
1 a 1 a
ﬁ(auAu)Q = %(aMAOH)Z =y = Z3 « (7.74)
A
Z gaﬂAgAZAIC/ = gUaﬂAguAguAgu = Jo = —é g
Z3

But in addition to the relations (7.74) we still have the following two relations:

VAR

2 7,A = 2AL = = 7.75
g 2y 9o Ao 7, Zs ( )
. B Z 7
Z A = A _ = —
g4y NAmn GoMoAoNo = 7 7

These relations are called the Slavnov-Taylor identities, and at the present stage we
have no real understanding of the identities. We can only check from (7.67)-(7.71) whether
(7.75) is satisfied of not. Since the Z;’s to 1-loop order have the form 1+ c;¢%/c + (g*) we
can to a 1-loop approximation rewrite (7.75) as

Zy =27 —Zs+0gY), Zy=21+ Zs— Zs + O(g*). (7.76)

From (7.67)-(7.71) we see that (7.76) indeed is satisfied to one loop accuracy. A similar
result is true to two loop. This indicates that non-abelian gauge theories are multiplicative
renormalizable. In the section on BRS-invariance we will prove (7.76) without relying on
direct calculations. However, as already remarked, the results are not that surprising: As
long as we use a regularization which respects the symmetries of the lagrangian, there is no
need to introduce counter terms which break the symmetry. Before turning to the rather
technical aspects of BRS-symmetry we will discuss how to include fermions (quarks) in
the above calculations, and also discuss some implications of the one-loop results.

7.5 Fermions

The formalism can readily be extended to include matter fields. We know that gluons
couple to quarks. The coupling in minkowskian spacetime can be written as

Log(A,1p) = =(z) (" Dy + m)yp (7.77)

The metric g,, in d-dimensional minkowskian space-time is the usual one: gop = —1 and
gij = 045, 1,5 = 1,...,d — 1. The y-matrices satisfy

{7V W}t = 29 (7.78)

and 1) is defined by
¥ =Yy (7.79)

Finally, the covariant derivative is defined by (as already mentioned)

DM = aﬂ — Zg(TJ(cI)ZJAZ (780)
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In this formula for the covariant derivative the matrices T} constitute a Ny-dimensional
representation of the non-abelian Lie group G and the fermions form a column vector

U
o=+ |, (7.81)
Uny
but at the same time they also constitute a representation of the Lorentz group and have

a spinor index o ranging from 1 to Ngp,, the dimension of the spinor representation of
the Lorentz group:

¢N¢ia7 7::]-7"'7 Nfa a:]-a"'aNspin (782)

When we rotate to euclidean space the Lorentz group goes into SO(d) where d is the
dimension of the euclidean space. The spinor representations of SO(d) can still be char-
acterized by y-matrices now satisfying (as already mentioned when we discussed QFE D)

v wt =20, p=1,...,d (7.83)

Further we recall from the discussion of euclidean fermions in QED that 1 will have to
be treated as an independent variable, not related to 1 by 1 = 1y,. We will define 1) to
transform like the adjoint of 1/ with respect to all transformations. Then 11/ is a scalar,
zﬁvuw a vector etc.

The euclidean action for the Dirac fields will now be:
S = /ddm/_)(%Du +m)1 (7.84)

and this action is invariant under local gauge transformations, SO(d) rotations and trans-
lations. The Feynman rules can be found for this new term and have already been given
in the general table of Feynman rules. They are separately stated in fig.7.4, where we
have also shown the new class of superficially divergent 1PI diagrams. The diagrams are,
as usually for renormalizable theories, associated with the propagators and the vertex
functions already present in the lagrangian. Explicitly we have here fermionic self-energy
diagrams and diagrams associated with the QE%A”w vertex. The diagrams have superfi-
cial divergence w(D) = 1 and w(D) = 0, respectively. The divergences can be cancelled
by counter terms compatible with a multiplicative renormalization. We have

SLIA, B, 0) = (Zgs — 1) §ydyth — i(Zg1 — 1) g Auts + (Zn — mipis (785

where

2
G 2
252 b= o 2
2
1t i )
Zn = 1= 15 (a0 +Ca(G) |1 y - (7.86)
2
o 9C 2
A 167T2(4 (1 Oz))g

We note that these expressions reduce to the ones of abelian electrodynamics if one
substitutes Cy = 1,C5(G) = 0. Of course the new interaction also adds new divergent
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Figure 7.4: New propagators, new vertices, and the new superficially divergent 1PI Green
functions introduced by the fermionic interaction

diagrams to the 1PI Green functions we have already considered in the pure gauge theory.
The one loop diagrams along with their divergent parts are shown in fig.7.5. These
diagrams will change the values of Z3 and Z; but with these new values we can still
attempt to write:

‘C(Aa 1;: 7/), g, m) + 6‘C(A7 1;; wa g, m) = ‘CU(A(]a 1;07 %a 9o, mU) (787)

or

Zopthyu0uth — i Z 11 gty Auth + mabty = oy, 0utbo — igotho v Aoutho + mothotby  (7.88)

We have now an extended problem of renormalization: We still have only one coupling
constant ¢ and in order to maintain the multiplicative nature of the renormalization
we have to have further relations between renormalization constants: extended Slavnov-
Taylor identities. It is easy to derive them. We still have the old relations coming from

the vertex functions in the pure gauge sector. Especially Ay = Zé/ZA and gy = ng/Z§/2.

2
g 42
A . Pole part = ——2_1,2%
QMN ol¢ par 1672 '3

+ 2
‘ g 42
EA\ A : Pole part = _167r2Tf§E

Figure 7.5: The fermionic contributions to 1PI two- and three-point functions of the gauge
fields
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Using these relations and the wave-function renormalization
Yo =25, o= 214’0 (7.89)
which follows from (7.88), multiplicative renormalization demands

Zy

Zpgh A = gothoAgto = Zip = sz;
3

We conclude that the Slavnov-Taylor identities should be extended to

@:é:é:é (7.90)
Ly 43 Ly .

Again we can check that these extended relations are satisfied to one loop, but a proof

which does not appeal to explicit calculation must wait until we have introduced the

notation of BRS-invariance. At this point we will content ourself to just state that non-

abelian theory of gauge field coupled in addition to Dirac fermions seems to provide us

with a renormalizable theory, which preserves the gauge symmetries of the original theory.
Finally we can couple the system to bosonic fields too by adding

L(¢, A) = (D) (Do) + V(6'9) (7.91)

Needless to say multiplicative renormalization can be extended to this case. Further
Slavnov-Taylor identities result, and we will still have only one gauge coupling g for the
whole theory thanks to the Slavnov-Taylor identities.

Before we turn to a systematic study of the Slavnov-Taylor identities and the BRS-
invariance we will discuss some of the physical implication of our one-loop results.

7.6 Asymptotic freedom

We consider now the effects of a one-loop calculation. We found

Z
go=gp’ 5 e=4—d (7.92)
Zy

Other combinations could be used by means of the Slavnov-Taylor identities. p is the
mass scale which is introduced by dimensional regularization. As we have seen it can
be related to other mass scales like a subtraction point p? = x? in momentum space by
a finite renormalization. Heuristically we can view p as a typical mass scale where we
perform our calculations. Using the values for Z; and Z3 to one loop, calculated in the
minimal subtraction scheme (MS) where only the pole term is included we find

2

90 = pg (1 g (1—6102(0) _2 f> 2) (7.93)

1672 377) €

In (7.93) we have included the effect of fermion loops in Z; and Zs. Cy(G) denotes the
Casimir for the adjoint representation and 7 for the fermionic representation is defined
by (7.6).
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Since the bare quantities: go, Ag, ¥y etc. are independent of i (but not of ¢, of course)
we get from (7.93):

d € 3 2 3¢ 2\ 0
0=l = 5y (g g <->g)+/ﬂ2 (1— I ) >u—g+0(95) (7.91)

2 1672 1672 "¢ ) Vou

or
By —ig9+125() + O(g%) e 2¢ 5
Yy _ 167 - _"g_ )+ 0O 7.95

We conclude that the limit ¢ — 0 is finite to one loop and independent of the gauge
parameter «. In general we can write: (taking ¢ — o)

dg
where the [(3-function has a perturbative expansion
B(9) = 61g” + Bog’ + Bag” + - -- (7.97)

It can be shown that the coefficients (; are non-singular for ¢ — 0, and that the two first
coefficients are universal: they are gauge independent and they are independent of the
cut off used (here MS-scheme). As already discussed in chapter 5 for scalar theories we
can solve (7.96) (truncating (7.97) to the first term (;¢%):

_ 92(M0)
1 — B19?(1o) ln(/ﬂ/u%)

g*(1) can be understood as an effective coupling constant relevant for the scale u if g% ()
is relevant for the energy scale . This aspect is discussed more carefully in chapter 5.
Of course we can strictly speaking only trust (7.98) as long as (1¢%(j) In? i <1, but
in the case where 3; < 0 the situation is actually better in the following way: If we are
in a perturbative regime for one choice g*(j1p) the same will be true for all higher energy
scales. In fact the effective coupling constant will decrease as 1/ ln(ﬁ). This is illustrated
in fig.7.6. Now the effective coupling constant will grow at low energy scales u < py, i.e.
at long distances, a phenomenon called infrared slavery. This is a pleasant surprise: not
only is perturbation theory reliable at short distances (high energy), but the perturbation
expansion hint itself that something drastic could take place at long distances. And we
want something drastic to happen, since our theory is formulated in terms of quarks and
gluons, but all we see at long distances are hadrons which are bound states of quarks, the
interaction being mediated by the gluons. We have confinement of quarks and gluons.
Heuristically we can imagine that the growth of the effective coupling constant prevents
the existence of free quarks. Clearly an answer to such questions cannot be given within
perturbation theory. Unfortunately we have to say that not much progress has been
made in analyzing the confinement problem by means of non-perturbative methods. The
use of lattice gauge theories, which we will discuss later, seems at the moment the most
promising way to address the non-perturbative question of confinement.
It is seen from (7.95) that the non abelian theories lead to a f; < 0:

9* (1) (7.98)

1 11 4
= (Besr 1) =
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Figure 7.6: The behaviour of the running coupling constant for an asymptotic free theory

The non-abelian gauge theories are the only known theories which in a natural way provides
a negative (B-function in four dimensions. Any content of fermions or scalar particles
counteracts this. In particular will abelian gauge theories with scalar or fermion particles
have By > 0 ((7.99) with Cy(G) =0,Tf = 1).

In QCD we imagine that the gauge group is SU(3) and we have

Cy(SU(3)) =3 (7.100)
and )
Ty = (7.101)

for each Dirac fermion in the fundamental representation of SU(3). Thus the total 3 is

1 2
b=y (11 - gnf) (7.102)
where ny denote the number of flavours (i.e. the number of different quark families). At
the moment we have observed n; = 5 (up, down, strange, charm, bottom), but expect
to see at least one more (top) because of the so-called anomalies (see next chapter). We
conclude: QCD is asymptotically free. Note also that the demand of asymptotic freedom
put a (rather weak) constraint on possible grand unified models.

7.7 BRS-invariance

7.7.1 The Lee—Zinn-Justin identities

The full understanding of the relations like the Slavnov-Taylor identities was obtained
by Becchi, Rouet and Stora. They discovered an additional invariance, called BRS-
invariance, of the effective Lagrange function given by (7.52). It is a global invariance,
but as we shall see it resembles the local gauge invariance sufficiently to ensure relations
like the Slavnov-Taylor identities, and consequently multiplicative renormalization of non-
abelian gauge theories. The only additional requirement needed is a regularization which
respects the invariances of the effective action (7.52). Dimensioned regularization preserve
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gauge invariance and we will always imagine that we use dimensional regularization to
make sense of the formal expressions we write down.

Recall that under an infinitesimal local gauge transformation U(z) ~ e
1 +iga®(z)T* we have

iga® ()T ~

Al(z) = A(z) + 6A(z) = U(x)A(x)U ' (2) — éaU(x)U_l(x)
= A(z) + (0a")T" — ig[A, a"T"] + O(a?)

or

00Au(®) = [Dy,a(z)];  (6aA% = DPa’(z)) (7.103)

In the following we will use the short-hand notation D, for the vector V* = Da? and
we will change somewhat inconsistently between the interpretation of a variable like A as
being an element A*T'® in the Lie algebra and being the vector with components A®* with
transform as a vector in the adjoint representation. This is done in order to avoid too
cumbersome a notation and will hopefully not lead to any misunderstanding.

The effective lagrangian (7.52):

Lops(Am ) = {F + 5 (0uAL)? — 70, DL (7.104)
is not invariant under the local gauge transformation (7.103). The whole point of con-
structing the effective action was to break this invariance in an ”organized” way and make
a perturbative expansion about a gaussian extremum possible. However, L. is invariant
under the following infinitesimal transformation (BRS-transformation) which mixes gauge
fields and ghost fields, and which resembles the local gauge transformation (7.103) quite
a lot:

5.A = D oe

—a 1 a
bt = QA e (7.105)
5677(1 — _%Cabcnbnc . 8¢

¢ is an infinitesimal global parameter which is a grassmann variable: it anticommutes with
1,7 and commutes with A7. Clearly the anticommuting nature of d¢ is needed in order
that (7.105) makes sense (A stays bosonic also after transformation, etc.). Although the
transformation for A looks like a local gauge transformation with n?(z)-de playing the role
of a®(z) in (7.103), it is dc which is the infinitesimal parameter, and the transformation
is a global transformation. If we write the BRS-transformation on the fields as e92% the
operator Qg will precisely be the generator of the BRS-transformation and we denote
it the BRS-charge, in analogue with other conserved charges associated with internal
symmetries, like the electric charge associate with (global) abelian gauge invariance. From
(7.105) we get:

QBA = [Duan]
1
Quil = ~0,4, (7.106)

Qpn = ign’
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where 7? is a short hand notation for T9n*T°n" which can be written as [T, T®n%n®/2.
It is seen that the charge (g carries ghost number 1 and maps commuting variables into
anticommuting ones and vice versa.

We will now prove the invariance of (7.104) under the transformation (7.105). First we
note the following properties of the BRS transformation:

lemma: Qp[D,,n]=0; Qpn*=0; Qpd,A,=03,D,, 1

proof:

We prove only the first of the relations. The technique is the same for the two other
relations.

0c[Dpsm] = 0uben —igld-A,n] —ig[A, o)
= igdun*de —ig[(dun — ig[A,n)) de,n] —ig[A, ign® de]
The derivative term is zero:

g
—Qcabc((am”)nc +1°9,m°) + g™ (0un”)n° = 0

The term: —[[A,n]de,n] + [A,1n?d¢] can be written in components:
1
_[[Ta’ Tb], TC]Aa’l?b(Sﬁ’l?C + §[Ta, [Tb,TC]]Aa’l?bT]Cé&?.

Using the anticommuting nature of 7°,7° and de we can rearrange it:

e T [ [, T 1 110, T A

The Jacobi identity for the Lie algebra gives {-} = 0.

Since (7.104) looks very much like a local gauge transformation (Fj,)? is invariant
under (7.105) for the same reasons that it is invariant under (7.103). The rest of L.ff
transforms under (7.105) as follows:
1 _ 1 _ _
b |5 (OuA)? = 10, D] = { = (0uAu) 040 Ay — (670, Dy} = 10,0 (D) = 0

The curly bracket is zero by definition (7.105), while the last term vanish by the lemma.
We have now proven that L.rr(A,n7) is invariant under the BRS transformation. From
the lemma it follows further that:

GA=0; Qhy=0; Q4i=0,Dym (7.107)

The rhs of last equation is zero by the classical equations of motion (0Dn = 0 is just the
classical equation of motion for ). From the point of view of quantum field theory we
cannot put it equal zero, since the path integral includes field configurations which do not
satisfy the classical equations of motion. It is, however, possible to reformulate the field
content of effective lagrangian in such a way that:

2 =0 (Qp nilpotent) (7.108)
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The way to get Q% = 0 is to introduce the so-called Lautrup-Nakanishi field B: We use
the relation
piAB— 5B

-

which in the functional integral dressing looks like:
fdde Oy A /DB fdd [iB*(8,AL)*—% B%(x)?] (7109)

This means that we can replace (9,A%)%/2a with —iB*0, A% + aB?/2 and we get a new
effective lagrangian:

Leff(Aanaﬁa B) =

1 - a a o a =
Z(F;,,)2 — iB"0, A5 + 5B (z)* — 70,D,n (7.110)

The BRS transformation can now be written:

QBA - [ uaT]]

Qpfl = —iB (7.111)
Qpn = ign’

QB = 0 (7.112)

The last equation in (7.107) is now replaced by Q%7 = —QgB = 0 and (7.108) is indeed
satisfied. Clearly (7.110) is invariant under (7.111). In many respects (7.110)-(7.111) are
more convenient than (7.104)-(7.105). For instance it is readily seen that

1(F;:,,)2 + Qg (7 (0,4, +iaB/2)) (7.113)

£eff(Aa777ﬁa B) = 4

and the invariance under (7.111) is now a trivial consequence of Q% = 0. However for the
purpose of discussing renormalizability (7.104)-(7.105) are as good and we will use them
as they involve one field less.

Our effective Lagrangian is invariant under BRS. The functional measure D ADnD1 is also
invariant under BRS. This is clear from (7.105) when we consider the fields as generalized
coordinates: For A we just have a translation plus a rotation, for 77 a pure translation
while we for 7 has a rotation. Only the source term in the generating functional (7.61) is
not invariant under BRS transformations:

0. (JA+En+1&) = (J-QpA+E&-Qpn+ Qpi-§) o (7.114)

If we view the BRS transformation as a simple change in integration variables and use
the invariance of the measure we get to first order in ¢:

0—/DAD77D77 {/dd (J-QpA+E-Qpn+Qpn- g)} —Sesf[Amml+ [ dla (T A+En+ng)

(7.115)
In this expression QA and @) gn are relatively complicated functions. In order to simplify
expressions it is convenient to introduce sources for (JpA and (Qgn. Since both these
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terms are BRS invariant we can assume the sources are BRS invariant and introduce the
following BRS invariant coupling:

[ dia {Ka(@uays - L(@p0)) (7.116)

Nothing is changed in (7.115), except that the source term (82) is added to the exponent,
and we can rewrite (7.115) as follows:

1 4] =
— d _ _ —F[J§&K,L]
0= /d <J<5 5 8ﬂ<6JH>§>e

1.5 ]
0—/dd (“5}(@ f(;La _a“(5—=fﬁ)§> FlJ,6E K, L. (7.117)

or

This relation is somewhat similar to the ordinary Dyson Schwinger (DS) equations: It
relates different connected Green functions and its origin is the invariance of the measure
and Serr[A,n, 7] under a field transformation (the BRS transformation).

As for the DS equations it is convenient to transform (7.117) into an equation for the
generation functional T" for 1PI Green functions, related to F' by the Legendre transfor-
mation (7.62) (we do not perform a Legendre transformation in K,L). From (7.64) we
get:

/ddx{ar ST 6T 6T 6T 1 (7118)

et e (8A)}:0.
0A4OKS — dn* oL on® «

In order to simplify the notation somewhat we drop from now the notation Af} and write
simply A,. Hopefully no confusion is possible. Whenever we talk about fields in con-
nection with the generating functionals it is never the genuine quantum fields we have in
mind.

Another useful relation is derived by using the invariance of the measure under 7 —
7+ 07. Such a change is precisely what we used to derive the DS-equation for a scalar
field. The only difference here is that we use it for the "unphysical” ghost field. The
action and the source term changes:

1 1 _
0 (Z(F;V)Z + %(@AZ)? — N0, Dyn —JA—=E&n—nf — K-QpA+ LQB77>
= —01] (8uDu77) + 6) = —01] (au(QBA)u + 5)

and we get as before, by considering 7 — 7 + d7 as a change of integration variables in
the functional integral and expanding to first order in 47:

0= /DADnDﬁ/ddx 57z {au(QBA)u + &) e—Seff[Am,ﬁHfdd:v(JA+§_n+ﬁ§+K(QBA)—LQBn)
(7.119)
Since this is true for any d7j(x) we can drop [d%r and have (7.119) fulfilled as a local
identity (contrary to (7.118)):

0= (a 0 + §a> FULERD o g 0 FIJ&EK L] —&* =0 (7.120)

® a ® a
SK SK
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By the Legendre transformation we change from .J, &, € to the classical fields A, 7,1 and

we can write (7.120) as
or 4T

WSKa s

OKg  0m
Eq. (7.118) and (7.121) are the equations needed to derive the Slavnov-Taylor identities.
If we eliminate g—f_] from (7.118) by means of (7.121) and redefine I' in order to get rid of

(7.121)

the gauge fixing part 5-(0A)?, we are led to the final equations:

B A — = 1 d a\2
LlA,n, 7,k L] = T[A, 0,7, K, L] = o /d (9, As,) (7.122)
o o0  oT o0
! et = 12
/dx{aAgéKg“LamL} 0 (7.123)
or 6T
M(S—I(Z‘ - (577]‘1 — (7124)

These equations, called the Lee— Zinn-Justin identities, together with the tree level for-
mula for the generating functional (the gauge fixing term has dropped out by definition
of T'):

- 1
F(O) [Aa ﬁa 7, K7 L] = / (Z(FSV)Q - ﬁaliDliT] - KQBA + LQBTI7> (7125)

constitute the basic tool for proving the Slavnov-Taylor identities.

7.7.2 The structure of divergences

Relations (7.123) and (7.124) are very important if we want to understand in a system-
atic way the structure of the divergencies in the non-abelian theories. Already in the
abelian case we saw the corresponding relations were very useful for classification of the
divergences, but we could have done without them. In the non-abelian case that is very
difficult. Recall that renormalization is much more demanding in the non-abelian case:
not only must we argue that divergences can be absorbed by only adding counter terms of
the kind already present in the lagrangian, but in order that the renormalized theory can
be viewed as a gauge theory, invariant under that action of local gauge transformations,
the renormalization constants have to satisfy the Slavnov-Taylor identities.

It is not within the scope of this course to provide a general proof of the renormal-
izability of the non-abelian gauge theories. Instead we will show how we can derive the
Slavnov-Taylor identities to lowest order by the use (7.123) and (7.124) and without ac-
tually doing the one-loop calculations. The procedure we outline can by induction be
extended to arbitrary order without too many difficulties. We assume as usual that our
formal expressions have be regularized in a gauge invariant way, i.e. by dimensional
regularization.

We now look for divergent graphs at 1-loop. Apart from the old divergences we have
3 new ones due to the source terms KQpA and LQgn. The corresponding graphs are
shown in fig.7.7. These graphs give poles and local counter terms corresponding to each
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Figure 7.7: The new divergences due to the source terms K(QpA) and L(Qgn).

term in K(QpA) — (QBn) K4(9.n" + ge® Abn©) + L*4c**nPn°. We can now write the
divergent structure of I as:

fdiv(Aa , 777 K7 L) = fdiv(Aa , 77) - (ZS —1 /dde 3u77
—(Zy = 1) /ddx gc“bCK“Ab n°+ (X —-1) /ddx L(— B “bcnbnc) (7.126)

The idea is to use (7.123) and (7.124) to completely determine the structure of
LCaiv(A, 1,7, K, L) starting from (7.126) plus the fact that the loop expansion (the ex-
pansion in % or the coupling constant ¢, since there is only one coupling constant) allow

us to write:
[ =10 4 1Y) +hD%) . + 0(h?) (7.127)

where T'¥) is given by (7.125). The divergent part in (7.127) means the pole part in MS
(minimal subtraction). From (7.125):
5fdiv

5fdiv_ (7 2 a - abc b, c
o =9, S (Z3 —1)d (Z1 — 1)ge™@d, (A'°)

or:
Canl A0 7] = Ll A] = [ d' (Zy = Vo™ + (2 = Difge™ 0, (A"°)  (7.128)
This fixes the divergent ghost terms.

In order to fix I'g;,[A] we isolate the terms in (7.123) which are simple poles and of order

h.
/ g 5rdw oT© N T (© gTdiv N T g N ST© gTwv\\ 0 (7.129)
S K §A 0K én 6L 6n 0L N ‘

where (as already mentioned):

/ d'z { 1w T 7" (0uDyun)* — Kj;(Dyn)* 4+ L*(— 3 “bcnan)} (7.130)

In principle we can simply insert (7.128), (7.130) and (7.126) in (7.129) and we will get a
complete determination of T4V A].
Let us mention the systematic results:
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(1): Look for terms linear in K.

Contributions from the middle two terms in (7.129) cancel and from the others:

—/d4x{(21—1)KZ ae,) c /d4 D Ka)}{_2 abcnbnc}

We conclude after a few rearrangements:

X =2 (7.131)

(2): Look for terms linear in A and not containing K,L

We expand T%[A] = dw [A] +r8 div [A] I div [A] the superscript referring to the power of
the gauge field A. The equation is

6Fdw N N
0= [a's™ T (D'}~ (DuF, {(Zs =)o + (21 — g Aly®}  (7132)

and we can now expand this equation in powers of A. For the terms linear in A we have
0yD,Fy, — 0,0, (0,A, —0,A,) =0

and therefore from (7.132)

T
Jate o <o

or, by a partial integration

Lo [A4]
auW =0 (7.133)
The divergent quadratic part is purely transverse:
2 1 2
LR = (Zs—1) [ d'a 2 (9,45 - 0,7) (7.134)

(3): Look for terms quadratic in A and not containing L, K.

We continue the expansion of (7.132) and get for the quadratic terms:

5F(2) .
/ d'z { 5 Xffa 5 X;” g™ AL + 0,(0, A5, — 0,A5) - (Zy — 1)gc™ An© +

ge A (0 Ay — 0,A,) - (Z3 = 1)0m°} =0
or
[ dts { dw (%3 + 21— 23— 1) g (9 A, 8,,AZ)A,§} B =0
or

- - ~ 1
IO A = (Zs+ 21— 23— 1) / dwgerteAs AL (0,45 - 0, 45) (7.135)

(4): Look for terms cubic in A and not containing L, K

In the same way as we got (7.135) from (7.132), we get by collecting terms of cubic order
from (7.132) the following equation:

= (4) . . QQCabccade
() = (s +22 - 2 - )T [ ato azabagag (7.136)



(.0 DIvVO-1IN VAILIAINUL ZU9

We conclude from (7.135) and (7.136) that the renormalization constants Z; and Z,
associated with the three- and four-point vertices are given by

S Z
Zy = Zs+ 7y —Zs=Ts- ?1(1 + O(h?)) (7.137)
3
- Z; 2
3

This is exactly the Slavnov-Taylor identities and they are a consequence of BRS invariance.
We finally remark that with these relations and the scaling relations already derived:

AO = Z§/2A7 o, ﬁO = Z?}/Qna ﬁa Qp = ZgOZ, go = —=75

we can deduce the scaling of the source terms K, L at one-loop level:

K(QBA) — KZ (Z38M77‘1 + ZlgcabCAznc)
= K 23" (0 + g™ Abm) = 75" K(QpAo)

L(Qgn) — L°X (—%ca”cn”nc> = Z,*L° (—%0‘1“778778) = 73" L(Qpm).

From these two equations we have
Ko = Z3°K, Ly=Zy"L (7.139)
and we can finally write
rore loor(A .7, K, L) = To(Ag, 0o, 7, Ko, Lo).- (7.140)

By induction this proof can be extended to n-loops. But we are not going to discuss the
details here. They are tedious, but not extremely complicated.

7.7.3 Inclusion of fermions

Although we will not perform the analysis in detail let us mention the steps involved if
we want to include fermions in the above analysis of BRS-invariance:

1. Find the BRS transformation for 1, 1)

[\]

. Couple Qv and Qg1 to external BRS-invariant sources H and H

w

. Derive equations for I" (A, n, 7,0, K, L, H, H) corresponding to (7.123) and(7.124)

4. Isolate the terms which are simple poles and of order A and check the extended
Slavnov-Taylor identities.

5. Proceed by induction to order A"
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Since an infinitesimal gauge transformation acts on v and 1 as:

1/3i—>wl+ia“( ) 9%‘
wi%wz Z%Ta a( )

and we get the BRS transformation by replacing a*(x) with n%(z)de we get the following
transformation: (assuming {n, ¥} = {de,¢} = 0)

0y = —iTin";de, 6h; = —itpn"Tji0e (7.141)

and we conclude:
Qpp = —iT*n%p, QY = —ihpn*T* (7.142)
It can be checked that
Q= QR =0 (7.143)
and that
S = [ d'e {BOuDu+me = HiolQu)ia — Qud)inHia)  (7.144)

is BRS invariant if H and H are invariant.
As usual we write the partition function Z and the free energy F' as a function of the
external sources J, &, &, K, L and now (,(, H, H corresponding to a source term

/ddx (C_z'aT/)z'a + ViaCia + Hia(QBY)ia + (QBTE)mHm) (7.145)

A Legendre transformation in J, & &, ¢, ¢, but not in the BRS invariant source terms
K, L, H, H defines our effective action I and T as functions of 4,7,7,v, ¢ and K, L, H, H.
We get finally the generalization of (7.122)-(7.124):

/dd oT 6T 5f 5f+5f 5f+5f oT 0 (7.146)
5Aa 5Ka 677(1 oLe 5,¢}ia 5Hia (5’@/_)2'@ 5Hia N '
6T 6T
Opgee — = = (7.147)
”(5Ku 0

where the modified generating functional T' is defined as in (7.122):
~ - _ - _ 1
F[Aa n, 777 7/), wa Ka La H7 H] - F[Aa m, 77]7 wa wa K7 L7 Ha H] - % /ddx(auAu)Z (7148)

The new divergent 1-loop diagrams introduced by the sources are shown in fig.7.8. The
divergent part has the form:

(vl 1) / dlz i (T H + (Y — 1) / dzi [ () (7.149)

As before we can expand I' = I'® 4 B(T'%" 4 T°™) where we know I'® and we can
determine I'* in a systematic way. Eventually we will find that the generalized Slavnov-
Taylor identities are satisfied to one-loop and an induction argument can be performed.
Rather than discussing this in detail let us check how this quite involved formalism reduces
to the abelian Ward-Takahashi identities which we have already used in QED.
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Figure 7.8: The new divergent one-loop diagrams introduced by the source terms H, H.

7.8 The abelian case

We assume now that the gauge group is abelian. This means that the group structure

constants

SOLA 5,7, 0, 9] = /d dz GF

c®¢ = (. The tree level effective action is:

(aA)

The BRS invariance is rather trivial since ¢*¢ = 0:

QBAu = 8;”7
1
QBU - aauAu
®@pn = 0
QBQ/) = —”777/) )
Qe = —un
Our basic equations (7.146) and (7.147) reduces to
/ or oI 6T o N oL of
A, 0K, 0y 6H = 0o 6H
r r
L
0K, 07

O+ (D +m))

(7.150)

(7.151)

(7.152)

(7.153)

The equations are however greatly simplified by the fact that the ghosts do not couple to
the gauge field as is clear from (7.150) and (7.151). This implies that none of the BRS
invariant source term renormalizes and we have

oT or - oT
m—@m, 5—H—W77, SH
Eqgs. (7.153) and (7.154) imply
5f 5f

(7.154)

(7.155)

This is the Ward identity for QED. By functional differentiation we get relations between

the different 1PI vertex functions and propagators, as already discussed in detail.
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Chapter 8

Chiral Anomalies

8.1 Chiral invariance

We use the word anomaly in a field theoretical context when a symmetry of the classical
Lagrangian is not preserved in the quantum theory.
Recall that associated with any continuous global classical symmetry

Pr(@) = {7 s @s(2) (8.1)

we have a conserved Noether current. The derivation is as follows: Let us consider an
infinitesimal variation of ¢ in accordance with (8.1):

er(®) = @r(x) — i Arsips (2) (8.2)

Since we assume L(y,d,¢p) is invariant under (8.1) we can write (to first order in the

change 0¢):

oL oL
0=0L(p,0 ):% 5¢r+m
r uwfr

From (8.2) the change in ¢, can be written as dp, = —icA 505 , 0(Oupr) = —ieA 50,905
and by use of the Euler-Lagrange equations:

oL oL

§(0ur) (8.3)

=0 8.4
90, ~ " 5000) (&4
we get
oL
0=—ied, { == Ars gps} 8.5
8 {a(au%") (8:5)
We have the conserved Noether current:
oL
Ju =l ArsPs » 0uju =0 8.6
15 8(8‘(”07‘) wJ p ( )
Ex.1: The electromagnetic current
As the first example we consider the charged scalar field, with Lagrangian
L(p,¢" Au) = (Dup) (Dup) +V (1 6 7)), (8.7)

209
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where D, = 0, —ieA,, is the ordinary covariant derivative and we have ignored the
kinetic part of the gauge field since it plays no role in the following. We get that
Ars = e for ¢ and \,; = —e for ¢* and this leads to the following conserved current

Ju=1e((Dup) o — 0" Dyyp) (8.8)

As the next example we consider the charged Dirac fermion, with Lagrangian

L, ), Ay) = —=p(7, D" +m)y (8.9)

In this case we have \,, = e for ¢ and \,, = —e for ¢. This leads to the conserved
current (where we have dropped an i compared to (8.6))

Ju = 61/;7u¢ (8'10)

The chiral Current
The Lagrangian is the same as in the first example for the Dirac fermion, except
that the mass is equal to zero:

L, 1, Ay) = ipy, Dy (8.11)
Recall from chapter 6 that it is possible in even dimensions to define v4.1 by
Yd+1 = (_i)d/zﬂ’h’h ©Yd- (8-12)

(In euclidean space-time the is one less factor of —i). The 74, 1-matrix is hermitian
and anticommutes with all v,, 0 <y < d — 1 for d even, but is only proportional
to the the identity matrix for odd dimensions d. The Lagrangian is invariant under
the so-called chiral symmetry (which we now consider in d = 4)::

Y(z) — %~ (1 +iays)y (8.13)
O(z) — e = (1 +iays). (8.14)

The invariance of i1y, D follows from {v,,75} = 0. Note that a mass term breaks
the symmetry (8.13)-(8.14):

0 = 2 5 ¢ # 0. (8.15)

Under the chiral symmetry we have A\.s = A\ys = (75)as and the conserved Noether
current 57 is

T = VY V5 (8.16)

A priori it is not clear to what extend a classical relation like 0*j, = 0 will be preserved
in the quantum field theory. We used the classical Euler-Lagrange equations (8.4) to
derive the current conservation and in the path integral we are clearly integrating over
field configurations where this equation is not satisfied. On the other hand the classical
field equations are (modulo problems with gauge fixing) satisfied as expectation values:

(50
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This follows simply by making a change of variables in the functional integral: ¢(x) —
(x)+¢e(x) as already discussed in connection with the Dyson—-Schwinger equations. Thus
it is not unreasonable to expect that we have for a Noether current

(0" ju(2)) = 0 (8.18)

In fact this was one of the Ward identities of QED as already shown in one of the former
chapters in the case where j, was the electromagnetic current (8.10). It might be worth to
repeat the derivation in more general terms: Let us promote the global symmetry (1)—(2)
to a local transformation by replacing o — «/(x).

pr(w) = r(@) — i) Ars ps() (8.19)

Of course the field transformation (8.19) is no longer a symmetry of the Lagrangian. We
have:

o, o
O, ' 8(6#901")

. oL oL . oL
—ZO[(.T) {m)\mws + m)\rsau(ps} — 1 m)\mwsaua(x)

0L(p, Oup) = 6(Oupr) = (8.20)

The bracket is zero because (8.2) is a global symmetry and therefore:

5[] = / dz §L(p) = / dr ()], (z) (8.21)
Let us write
o ngOG_S[‘p]
1= ID@Q*S[‘P]

and perform the change of variables (8.19) in the numerator: Under the assumption that
the functional measure Dy is invariant under the (formal) unitary local transformation
(8.19) we get (writing e*® ~ 1 — 45):

(0S) =0 Va(z) or: [(0"].(x)) =0 (8.22)

Clearly we can get a whole series of Ward identities associated with the global symmetry
(8.1) if we change variables in the numerator in

x) - o(x,)e 5!
(pla) ol = LPEELTY o)

exactly as we did for above.

If we concentrate on the chiral invariance described in ex. 2, it is an interesting exercise
to check <8" ]2($)> = 0 explicitly in perturbation theory. From the arguments given above
it follows that:

(1): if <8“j2(x)> = 0 it is a proof that the measure DY DyYDA is invariant under local
chiral transformations. In fact one would expect this to be the case since formally
(8.19) is a unitary transformation.

(2): If <8“j2(x)> # 0 there must be a non-trivial Jacobian associated with the local
chiral transformation.
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8.2 Perturbative calculation

We now perform a perturbative calculation of (8"]’2). As usual we will rotate to euclidean
space-time while doing the calculations. In order to simplify the calculation we will only
perform it in 2-dimensions (but we will keep the notation 75, rather than change to y3).The
generalization to four dimensions contains no new surprises. The Lagrangian is (using
now euclidean notation)

- . 1
L(Y, 1, A) = =y, D) + ZFlfl, + gaugefix + ghosts (8.23)
The interaction term is

ﬁint(T/_)a (I A) = ieT/_)%A;ﬂ/) = ZGT/;A@/) (8'24)

and since the dynamics of the A, field plays no role at I-loop level we will just treat A, as
an external field and only concentrate on the functional integration over the v, 1 fields:

[ DYDY 9,55 (x) e S M g Solt ]
<8ﬂ 2> = f‘LDZZ)DQZ) 6_50[¢7&] (825)
where i )
Solv, ¢ = /d:c Dip. (8.26)

By expanding the exponent of the interaction term in a power series in the charge (the
coupling constant) e we get to lowest order in e:

(0,52(0)) = (9u32@)), + e [ Ay () (P )ouia(@)), + O (8.27)

Here { -)o denotes the expectation value with respect to the free action Sy[¢),]. The
first term on the rhs is zero, as is easily seen: It involves try,vs = 0. By a Wick contraction
we get:

(0,55()) = ai [ v AT (w) (5(2B (0)), (e (i (0B (@), (e
o0

o [ wAT() tr [S'(@ =y S - x)s] (8.28)

where S%(z — y)ap = <wa (x)zﬁg(y)>0 denotes the free propagator @' (z — ) and tr is a
spinor index trace.
Fourier transforming (8.28) leads to:

(i) = emy A7 (0) [ e [0S ] (629
| (9,550)) = e AT (~p) Ty () (8.30)
Too(p) = 1 / (ddk 61 [(9pkp) Y0 (k + D)ayavuys] (8.31)

2m) k2 (k + p)?
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Figure 8.1: The diagram contributing to the chiral anomaly in two dimensions.

where we have converted the (formal) integral in (8.29) into the standard notation of
dimensional regularization, i.e. we have written the integral in d dimension instead of two
dimensions, and introduced the mass parameter p which keeps the total mass dimension
of T, (p) invariant. We have in addition used that the massless fermion propagator is

S°(k)=—-=-= 8.32
9= =1 (532
Diagrammatically we can represent 7}, (p) as shown in fig.8.1. It is seen that the integral
defining 7),,(p) in (8.31) is logarithmically divergent in d = 2. It can be evaluated using
standard techniques of dimensional regularization:

_ dk  ko(k + p)
Tl“’(p) — :u2 dtr [7#757& f)/l/f)/ﬁ]/ (27T)d k2(k+p)§ (833)

where

/ Al ok +p)s / / ddk kol + 1)
(2m)4 k2(k + p)? (k? + 2ak - p + ap?)?

_ /Olda{ (1-d/2) m S LE-df2)_all = appy }

(47T)d/2 2(04(1 — a)p )1 d/2 (477)!1/2 (a( )p )2 /2
['(1—d/2) 0, ['(2—d/2) pap
- My - (834

At this point we have the pole term I'(1—d/2) corresponding to the logarithmic singularity.
Using a little y-algebra the second term is zero and we get:

(puil(p)) = (8.35)

1—d/2
o i (1—d/2) ! 1
epuiy, (=p) <p2> 2(47T)d/2 tr [7u757a7u7a] : /0 daa(l _ CY)l—d/Z

and further y-algebra leads to:

tr [V, Y5 Y0V Vel = =t [157u {2000 — VoVat Yol = (d — 2)tr [v57,70] (8.36)

where we have used
YaYa =d  (since v* =1) (8.37)

We can now take the limit d — 2 and get:

- € exr
(Pudn) = =5 tr[nns) pudi’ (=) (8.38)
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Figure 8.2: The diagram contributing to the chiral anomaly in four dimensions.

(333(0)) =~ tr sl 3 (BuAT () — AT (@) (8.30)

At this point (but only at this point, in order not to get in conflict with dimensional
reqularization which has no simple definition of s away from even dimensions) we can
use the special properties of two dimensions:

TV = Z.e,w/y5 + 6uu (840)

to get

—_

. € Fey [o— ex
<8M]Z> = —Z; F s = §€MVF[,LV' (841)

Let us at this point rotate back to Minkowski space-time. Thereby F' — iF and we get

Fr F=_e"Fa| (d=2) (8.42)

DO | =

(04) =

o

We conclude that we have an anomaly for the chiral current.

The same conclusion is true for four dimensions. Because of the properties of v, s
matrices is 4 dimensions the diagram shown in fig.8.1 is zero. But the triangle diagram

shown in fig.8.2 is logarithmically divergent in d = 4 and we get expressions quite similar
to (8.41) and (8.42):

2
5\ . € [eT 1rex o
(0,33) = i Bk B =

EMV)\pFAp (843)

DO | —

in euclidean space. By rotating to Minkowski space-time FF — iFF and we have

b5\ 62 [heT [ Tex\ v o —
(0433) = O3 Bez(peoy | B =

167 | (d=4) (8.44)

N =

From the arguments given above a local chiral transformation can not leave the measure
DD+ invariant. That the situation is indeed like this was first realized by Fujikawa
(1979). In the next section we will now outline the proof.
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8.3 The path integral measure under chiral trans-
formations

Again we will study the effect of the chiral transformations in two dimensions and only
mention how it is generalized to four dimensions. (In this case, somewhat contrary to the
perturbative calculation above, the generalization is quite trivial).

Again we view the A, field as an external field since it plays no role in the anomaly,
except as a spectator and again we rotate to euclidean space-time during the calculation.

Let AS¥(x) be given. il)= i7,(0, —ieA,) is formally a hermitian operator and we can
expand 1/) and 1) on its e1genfunct10ns In order to simplify the notation we will assume
(falsely) that the spectrum of iy,D,, is discrete and denote the eigenfunctions ¢, (). We

have
= aupa(e),  d(2) =Y o ()b (8.45)

ifVuDuSOn(aﬁ = An@n(x) ) /dx go;i;gpm = Onm (8-46)

Almost by definition we have:

DYDYy = [[ db, [] dam (8.47)

We can calculate the effect of a local chiral transformation on a,, and b,:

Y(z) = ¢ (z) = DBy (2) = 3, a,e @5, (z)

I (8.48)
n G Pn(T)
or:
dy =Y [ drgt @) o (@)an = Y Comtn (5.49)
b, = Z/dxl_)m@;(x)em(xm on(z) = Zl_)mC’mn (8.50)

We conclude that

Hdb’ Hda (det C) 2 Hdb Hdam (8.51)

The question we have to address is whether det C' = 1 for infinitesimal local chiral trans-
formations. We can write

C=I+a+0(? (8.52)
G = / dret a(@)ysom(@) , (Tm = Gum) (8.53)
(det C) 1 =g r1o8C = - ra+00") — 1 _ {14 4 O(a?) (8.54)
and we have
(et C) ' =1~ [dr () ¥ ¢t (@)vs0a() + O(?) (8.55)

The expression Y, ¢ (x)v5¢,(x) is not well defined. We need to regularize it. Since we
will insist that our theory is gauge invariant we demand that the reqularization should be
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gauge invariant. The eigenvalues )\, are gauge invariant since i7,D, is covariant. Since
|An| — oo for |n| — oo two gauge invariant regularizations suggest themselves:

@: X e e, 10 (5.56)

A

B): X et e () pule), mo oo (8.57)

The first method is called (-function regularization after Riemann’s Zeta function
00 1

C(s) = Xni 75 ((s) is analytic for s > 1, but can be analytically continued to s < 1 and
has no poles except at s = 1. Here we will follow Fujikawa, however and use (B). It is
a gauge invariant way to cut away eigenvalues |\,| > M. In order to evaluate (8.57) we

reintroduce i) and write @, (z) = (z|n):

>
M2

Zson V1537 ou(2) = S | 235 €4 (@ | n) =
Iﬂu%fﬂ@zmhﬁg%wm%Mx (8.58)

In (8.58) we have simply performed a change in basis from | n) to plane waves e*® x v,,

where the v,’s are just constant spinors. The first trace ”Tr” is over the whole Hilbert
space while "¢r” just denotes the trace over spinor indices.

_; »r k2 P2+2ik,D
lemma: e~ ke otk — (e M2 e M2 - 1(z)

where .
) 1
ﬁ =D?_ zeaw,FM y Ouw = Z[’m,’)’u]

and 1(z) denotes the constant function.
Proof:

1 1
lD? = MDDy =3 {%% + %Y} DuDy + 9 1YY = YoV} DuD,
1 1
= OwDuDy + 3 ] DuDy, = D2 + = n [Vus V] (DD, — D,D,,)
1 , _
= D;ZL + Z [7}“ /YV] (_ZeFuu) = D2 — ZO’MVFMV.

This means that

(e PPe*) fx) = (=K + 2ikD,) + 1) f(x)
From (8.58) and the lemma we now get

2 en ()5 €37 oulx) = (8.59)

ek e +2ik, D +2ik,D,)’ 1
/(27r)2 ¢ <1+1p2 A & g s +O<_> 1@
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The gaussian integral leads by dimensional reasons to a term ~ M? and the first term is
potentially divergent. However, trys; = 0. The second term is finite and independent of
M as M — oo while the rest of the terms will go to zero as O(1/M?). From the second
term only trys0,, # 0 (tr v50,, = €, in d = 2) and we get:

ko 2 i€€u F ()

2 e ~
an )75 eM® @y (T —>/ —az .k (8.60)

for M — oo in d = 2. The result may be generalized to d = 4. The gaussian integral is
then proportional M?. The two first terms in (8.59) are potentially divergent terms but
trys(--+) = 0 for all terms. The third term in (8.59) leads to a finite contribution for
M — oo while the terms denoted O(1/M?®) vanish in this limit. For the third term only
trv50,,0x¢ # 0 and in fact equal %eu,,)\g. We then get

2 62 ~

5o ()33 ou(2) = iz Fuwl@) Fu(0) (8.61)

in the limit M — oo.

We can now derive the chiral ward identities directly from the functional integral. We only
have to add that during a local chiral transformation ¢(z) — e*®%¢(z), the measure
changes as:

DYDip — DYyDife’s J 4 @FE) | (g = 2) (8.62)

— _ -32 ~
DYDY — DipDipe'tor | wwel) b @Fu(@) | (g = 4) (8.63)

Therefore the change in action under an infinitesimal local chiral transformation is effec-
tively changed from equation (8.21) to (for d = 4)

i 52

5Seft _/dm (a () + 126€7TQFW(x)FW(x)> (8.64)

and we get as in (17) that (§S¢//) = 0, which just reflects a “trivial” change in variables
in the path integral, leads to the chiral anomalies (8.41) (d = 2) and (8.43) (d = 4).
Applying the same transformation to the expectation values

(@) - (@) V(W) - (Ym) Amy (21) - - Ay (21)) (8.65)

and using the transformation (8.63) leads to the so-called chiral ward identities between
various Green functions. These were first derived in perturbation theory, and before
the derivation of Fujikawa it was a mystery how one could obtain them from formal
manipulations of the path integral.

8.4 Extensions of the simple anomaly

In the following we will mention several extensions of the above formulas for the chi-
ral anomaly. No proofs will be given, but in principle the results are straight forward
generalizations of the simplest example of an anomaly studied above.
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8.4.1 The chiral charge for abelian theories

In the former sections we studied the abelian anomaly. The name anomaly was related
to the fact that the Néether current j;(z) of the abelian global chiral transformation

Y — M%) (8.66)

was not conserved at the quantum level. Integrating over space we find (discarding surface
terms of the current at spacial infinity)

8Q5 3 v — 3. 5
= - 167T2/d st B, P £0,  Qs(t) :/d z 3, 1) (8.67)
However, in the formulation of Fujikawa it seemed as if the problems were connected
to local chiral transformations, and it is not entirely obvious that global chiral symme-
try really should be broken. Indeed, it turns out that the term F'F' which violates the
conservation of the current j/i’ is a total divergence:

F, F" = 40, (e"77 A,0,A,) (8.68)

and we conclude that we can define another current
2

= - € v o
]Z = ]2 - R (8MV,DO'A 0’A ) (869)

which s conserved and where . .
05 = / &Pz (8.70)

is a conserved charge. At first sight it looks alarming to attribute any physical significance
to the current j/i’ since it is not gauge invariant: Under a gauge transformation A, —
A, — e 10, we have:
355
Jp = Jp+ i 25#,,[,(,8"14”6” (8.71)

However, Q5 is gauge invariant:
Q5 = Q5 - Scs[Az] (872)

where S.s[A;] is the so-called three-dimensional Chern-Simons action

Sus[A}] = / & i Ai0; Ay (8.73)

47r2
This action plays an important role in solid state physics in the attempts to describe the
quantum Hall effect and high 7. superconductivity. Unfortunately we have no space to
discuss these interesting aspects here. Let us only show that S.[A] is gauge invariant:
Under a gauge transformation we have:

Sus[A] = Ses[A] — / & 20, Andicr (8.74)

and by a partial integration the last term can by written as a surface integral over a
surface S at spatial infinity:

/ dS;Bia (8.75)
S
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This integral vanishes in an abelian theory without monopoles where the magnetic field
B; falls off faster than 1/r2.

Since Q5 is gauge invariant and conserved it is a potential candidate as the generator
of global chiral transformations in the quantum theory instead of the non-conserved Qs
and one can show that it indeed generates the global chiral symmetries in the quantum
theory. We conclude that global chiral symmetry is unbroken at the quantum level even
if the classical Noether current is not conserved.

8.4.2 The chiral charge in non-abelian theories

The abelian chiral symmetry can be embedded in a non-abelian theory of massless
fermions in a trivial way. Let the action be

S(.v) = - [ d'apy D,y (8.76)

D, =0, —igA;T". (8.77)
(8.76) still has an abelian chiral symmetry (8.66). We get as a trivial generalization of

our former anomaly equation:

2

5 9 I
"y, = 167T2trF“ FL (8.78)

where the F),, inside the trace as usual is the Lie algebra element F, 7" Again it is not
clear that the global chiral symmetry should be broken. Indeed, even in the non-abelian
case one can write tr F'*F),, as a total derivative:

i 2
tr Py = 0y 47t (4,04, + 54,4, 4,) (8.79)

where A, = AJT". Again we can construct a current:

2

= . g v o 2 v o
=4 (A" A7 4 AV A7) (8.80)

Ju — Epvpo
1% 47T2up

which is conserved. It suffers from the same disease as its abelian analogue: It is not
gauge invariant. Let us repeat the analysis of the abelian theory and check whether the
conserved charge Q5 is gauge invariant. Integrating js over space we get:

Q5 = Q5 - Scs[Az] (881)

where the Ss.[A] denotes the non-abelian Chern-Simons action:

2
2
SCS[A] = J /d3£U Eijk tr [Aza]Ak + gAzA]Ak (882)

472

Let us check how S.s[A] transform under a non-abelian gauge transformation

A = UAU™ — é@iUU‘l (8.83)
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Since the time-dependence is of no importance in the present context we will ignore it.
Then we can view the gauge function U(x) € G, G being the gauge group, as a map
from R3 to G. We will further assume that the gauge transformation is trivial at spatial
infinity:U(z) = I for || — oo. This means that we can compactify R* to S* and still
consider U(z) as a map from S® into G. In order to simplify the discussion we will
further assume that G = SU(2), the simplest continuous non-abelian group. However, all
conclusions to be reached extend to other semi-simple Lie groups. Any SU(2) matrix can
represented in a unique way as

4 4
U=> ao;, > ai=1 (8.84)
=1 i=1

where o; denote the Pauli matrices for i = 1,2,3 while o4 = I. We see that SU(2) is
topologically equivalent to S®. With the above mentioned boundary condition on U the
topological classification of gauge transformations U(x) from R* — G is identical to the
topological classification of maps U : S* — S%. The homotopy classes of such maps are
completely characterized by the so-called winding number n, which describes how many
times the image of S* by U winds around S3. Gauge transformations within one class can
be continuously deformed into each other, but it is impossible by a continuous deformation
of the map U to move from one homotopy class to another. For a given U there is a closed
expression for this winding number:

n= T E;ip UL k .
&’z gy tr GUU T, UU 0, UU . 8.85

47r2

Let us now return to the Chern-Simons action and perform a gauge transformation (8.83).
After some algebra one finds:

Sus[A] = Sus[A] + / & ey trUUO,UU 9,UU ", (8.86)

4m2

we now see that S.s[A] is invariant under so-called local gauge transformations, i.e. gauge
transformations which are topologically trivial. This is analogous to the abelian case.
However, a new feature has entered in the non-abelian case. For the so-called large gauge
transformations S.s[A] will change by integer amounts, according to (8.85) and (8.86).
We conclude that Qs is not gauge invariant.

There is still a possibility for saving Q5 as a gauge invariant quantity. Since the gauge
transformations fall in disconnected topological classes it is not a priori obvious that they
all belong to the theory. Clearly the ones connected to the identity, the ones with winding
number 0, should be included, but the other ones could be irrelevant for dynamical reasons.
To make this more precise consider the following situation: Let us work in temporal gauge
where Ay = 0. As a residual gauge invariance we still have all gauge transformations which
are independent of time, i.e. precisely the ones we considered above. Let us rotate to
euclidian space-time and ask whether there is any field configuration Wlth finite action
which interpolate between the trivial classical vacuum configuration A = 0 and the
vacuum configuration obtained by a large gauge transformation with Wmding number
n: AW = —i/gd;U(n)U~"(n), where U(n) has winding number n. If A is such an
interpolating configuration, i.c. A (zy = —oco,z;) = A”(z;) and A (z4 = oo, x;) =
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AEI)(xj) we have to lowest semiclassical order that the amplitude for a transition A®
A will be .
T(AO® — AM) ~ = min(g [ o tr Fu (47)7) (8.87)

In case the action for all such interpolation configurations were infinite it would indicate,
that it is impossible to move between the different gauge sectors and if we start out
with configurations close to the trivial vacuum, the large gauge transformations will be
irrelevant and consequently we would be able to consider Qs as conserved.

The general statement we can make is that there exists such interpolating configura-
tions with finite action. Any such configuration has to satisfy that

n = SuA")] = 5,[A0) = 2/d4x tr Fl o, (8.88)

as is clear from the definitions above. In fact the gauge field configurations which falls
off sufficiently fast that we can consider them as belonging to the compactification S* of
euclidean R* are classified by their Pontryagin index n, defined by

n= /d4x tr F,, F, (8.89)

167r2
We see that this n is nothing but the winding number considered above. In addition the
configurations which allow a compactification to S* fall off sufficiently fast that the action
15 finite and we see that there is no reason not to include the large gauge transformations
among our allowed gauge transformations. It is an interesting exercise to calculate the
minimum action which can appear in (8.87). The gauge field configurations which saturate
the minimum are so-called self-dual field configurations (F), = F},) which means that
(8.89) actually gives the lower bound on the action. For n = 1 these configurations are
called instantons and we see that the leading semiclassical contribution to (8.87) will be:

1672

T(A® — AWy ~ e o7, (8.90)
We refer to the chapter on classical gauge fields for details.

We have therefore reached the conclusion that Qs cannot be gauge invariant, and it has to
be discarded as a physical observable. At this point we have no candidate for a conserved
chiral charge, and the conclusion which has been drawn is that the abelian global chiral
symmetry has to be considered explicitly broken for non-abelian gauge theories, in contrast
to the situation for abelian gauge theories.

8.4.3 Gauge anomalies

In the above examples the gauge fields have been coupled to the fermions via the vector
current QE%A#w = trj,A, and we could maintain conservation of j, at the quantum
level. In fact the chiral anomaly arose as a result of insisting on gauge invariance, which
implies the conservation of j,. It is clear that chiral fermions, i.e. fermions which are
either right-handed or left-handed:

Vri = 5 (1 W)Y, (3.91)
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coupled to gauge fields will pose a potential problem since a potential anomaly now
might get in conflict with the current conservation required by local gauge invariance.
Let us consider a general gauge group G which can have both abelian and non-abelian
components and couple the gauge fields to left handed fermions:

S, A) =~ [ dab (1 4+ ) (5.92)

This action is invariant under local gauge transformations
A, = U@)AU (@)™ - é@uU(x)U(x)_l, Y(z) = Ux)y(x), o — U (z) (8.93)

and of course under the corresponding global transformations, from which we get the
covariantly conserved Noether current

_ o . i -1 a
D" ju =0, (8", — iglA", 5] = 0), Jp = —¥5 (L +95) 0T, (8.94)

We can only construct a consistent gauge invariant theory if the partition function is
gauge invariant. This especially means that the part

Z[A,] = / DY DipelSHb-4) (8.95)

must be gauge invariant (since the rest of the complete partition function which involves

Ik DA s explicitly gauge invariant). Let us now apply an infinitesimal [ocal gauge
transformation to the A, in (8.95): A, — A, + D,a. We get

5Z[A] _ n W iS(Pap,A
ol = / DYDY (D", (x)) €SP0 (8.96)
i.e. N - L
o) =0 = (D=0 (8.97)

However, if we instead repeat the Fujikawa analysis of the effect of an infinitesimal change
of variables 1) — (1 + i), 1 — (1 — ia) we do not get (8.97) due to the fact that
the measure is not invariant. The same conclusion is reached by a direct calculation of
the triangle diagram and we see that the situation is the same as for the abelian chiral
(or axial) anomaly: the current j, has an anomaly relative to the classical covariant
equation (8.94), only are the coefficients slightly different from the the ones encountered
in the abelian case due to the projection operator 3(1—-s5) and the (possible) non-abelian
nature of the current j,:

0 1 oo . 1
(D,j2) = o, ( S [T (A,0,A4, + 5AVApA(,)D (8.98)

However, contrary to the cases considered above, this anomaly is in direct conflict with
the requirement of gauge invariance as expressed by (8.97) and unless the rhs of (8.98)
vanishes identically there is an obstruction to the construction of the gauge theory itself!
Due to the antisymmetry of ¢,,,, the rhs of (8.98) will vanish if

d" = tr T*(T*T° + T°T") = 0. (8.99)
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For SU(2) this condition is satisfied since T°T¢ + T°T? = 0. For SU(N), N > 3 it is not
satisfied and we have to combine several species of chiral fermions if we want to achieve
(D,j.) = 0. Such a cancellation is possible if we note that the over-all sign of the term on
the rhs of (8.98) change if the left-handed fermions are replaced by right-handed ones, i.e.
(14 5) with (1 — 5) in the action (8.92). Note also that if we consider Dirac fermions
there is never a problem since the massless Dirac fermion decomposes in a left handed
and a right handed chiral fermion, and these gives precisely opposite contributions to the
rhs of (8.98).

8.5 Physical consequences of the anomaly

We now discuss a number of applications of the anomaly.

8.5.1 The electromagnetic 7° decay

One of the most famous applications of the abelian anomaly is to the decay 7° — 7. In
the quark models the pions 7%, a = 1, 2, 3 are related to the divergence 8"]’2 of the axial
vector currents

Ju(@)® ~ w(x)%avwm(x) (8.100)

where 0 denote the Pauli matrices and are associated to the flavor indices. It is seen that
the calculation of the decay of 7° (index 0 is equivalent to a = 3) to two 7’s will involve a
triangle diagram with a photon at two of the vertices and the pion field (represented by the
divergence O jﬁ(x)3) at the third vertex. This diagram is anomalous and consequently the
current jz has an anomaly. Before the discovery of the anomaly the decay posed a problem
since one could argue from chiral symmetry that o* jg was (partially) conserved' and the
decay should be suppressed. If one takes into account the anomaly one finds agreement
with experiments. In addition it should be noted that one only finds this agreement if
we have three independent internal degrees of freedom assigned to each quarks. In this
way we also get a beautiful verification of the assignment of three colours to each quark.
(Of course the present days measurement of the Z° decay verifies this assignment much
better).

8.5.2 Non-consevation of baryon number in the electroweak
theory

Another example of an abelian anomaly, but now embedded in a non-abelian theory, is
the one associated with the baryon-number current in the standard electroweak theory.
Let us remind the reader about the fermion content of the standard model. We have
three generations of fermions. The fermion content of the first generation consists of two
left-handed SU(2) doublets : A leptonic one of the electron neutrino and the left-handed
component of the electron and a hadronic one consisting of the left-handed components
of the up- and down-quarks:

L:(?L> QL:<Z§> (8.101)

!The mass of the pion’s lead to an explicit breaking of the chiral symmetry.
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where e;, = 1(1 — v5)e™, while the right-handed part of the electron R = (1 + ~5)e™.
The chiral nature of the fermions in the standard model forbids explicit mass terms, also
for the electron (the mass terms are acquired from the Yukawa coupling to the Higgs field
by spontaneous symmetry breaking). A similar decomposition is valid for the quarks. All
the right-handed components are singlets under the SU(2)-weak gauge transformations.
The part of the lagrangian involving fermions is:

4
Sleptons = _/d x

Squarks = _/d41‘

_ - 1 1
Rv,(0, —i¢g'B,)R + Lv,(0, — §7jg'Bu + §igAZa“)L (8.102)

2 1 . 1 - a__a
QrYm (0, + 529'YLBM + 51914“0 Q1

£30 Quliy0 + 50'Va(i) B)Qn(i)] (8.103)

=1

For the two other generations, ((v,,p);(s,c)) and ((vr,7);(b,t)), we have similar la-
grangians.

The fermion number Fis classically a conserved quantum number in the above theory.
The same is true for the baryon and the lepton numbers, B and L, and even for the three
lepton numbers (L., L,, L) separately. The symmetries of the lagrangian which leads to
these conserved quantum numbers are the global (abelian) transformations:

g — 9B 1 - o], (8.104)

in an obvious notation. As is well known the quarks have B = 1/3 while the leptons have
L = 1. The Néether currents of the symmetries (8.104) are classically conserved. Due to
chiral nature of the fermions and the asymmetric coupling of the left- and right-handed
particles to the weak SU(2) fields, both the B and the L currents have an anomaly with
respect to this gauge group. Since SU(2) is non-abelian we have the situation discussed
earlier: An abelian anomaly embedded in a non-abelian theory. Due to the existence of
field configurations with non-trivial topology (instantons) we have to consider the sym-
metry (8.104) as explicitly broken and the quantum numbers B and L are not conserved?.
This amazing situation, which seems in direct contradiction with the experimental reality,
was first noticed by ‘t Hooft in 1976. He also resolved the apparent conflict with experi-
ments. If we denote the Noether current associated with the first symmetry in (8.104) by
jp we have according to (8.80) that

N, .
B gen
oMj, = 167T2trFF. (8.105)
Integration gives
Nen ¢ ~
B(t:) ~ B(h) = 125 [ dt [ d' w FF. (8.106)
1

From this equation we see that the baryon number will change by an integer when the
integral on the rhs does. At zero temperature such a change can be related to a tunneling
from one classical vacuum configuration to a neighbouring one, the two connected by
a large gauge transformation. This tunneling effect is precisely the one calculated in

20n the other hand it can be shown that the anomalous contributions cancel between B and L which
means that B — L is conserved also at the quantum level.
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(8.90) and the process is therefore exponentially suppressed by e~*m/®w in a semiclassical
approximation. Note that the coupling appears in a non-analytic way. (For the calculation
of this tunneling amplitude we refer again to the chapter on classical gauge theory). v,
denotes the weak coupling constant a,, = g2 /47 ~ 1/30 and the amplitude for baryon
number violation is very small due to the smallness of the electroweak coupling constant.
Not many baryons have decayed in the lifetime of the universe according to this estimate,
and in this way the baryon anomaly is not in contradiction with experiments.

At this point it seems as if we can happily forget everything about the baryon anomaly.
However, it was later recognized that the suppression by tunneling between different gauge
vacua is only effective at zero temperature. In the early universe, when the temperature
is comparable to the masses in the electroweak theory, thermal fluctuation might mediate
a transition between different gauge sectors, which are related by large gauge transforma-
tions. At sufficiently high temperature this thermal diffusion will be unsuppressed. This
means that the rhs of (8.106) will change rapidly and therefore also the baryon number.
We reach the conclusion that, due to the anomaly, we cannot consider the baryon number
a conserved quantum number in the early universe. This in turn implies that the num-
ber of baryons and anti-baryons was essentially equal, no matter what happens at the
GUT scale, all the way down to the electroweak phase transition, and we have to explain
the observed asymmetry of baryons and anti-baryons at or after the electroweak phase
transition. This is a major unsolved problem at the moment.

8.5.3 The solution of the U(1) problem

We have no space to discuss this problem and its solution in any detail. We can only try to
give the reader some hints. The starting point is the phenomenological observation from
the sixties that the chiral symmetry SU(2);, x SU(2)x can be consider as an underlying
symmetry for the strong interactions. It has to be considered spontaneously broken to
SU(2). The pions are the (almost) massless Goldstone bosons associated with th broken
symmetry. However, after the hadron physics has been associated with the specific QC'D
lagrangian the chiral symmetry group is naturally U(2) x U(2). The reason is that if we
write down the massless QCD lagrangian of Ny flavours then any unitary transformation
between the flavour components of the quarks leave the lagrangian invariant, and if it is
massless the chiral variants of the unitary transformation leave it invariant too, i.e. the
symmetry group is U(Ny) x U(Ny), the transformations being:

=Ty, = €T, (8.107)

In (8.107) the matrices T are generators of the Lie algebra of U(Ny) and act on the flavor
index of 1, which in addition has a colour index for the colour symmetry group SU(N.,),
N, =3.

In the real world the quarks are not massless and the chiral symmetry is not exact, but
the u and the d quarks have relatively small masses and we expect the chiral symmetry
of two flavours to be a reasonable approximate underlying symmetry of the strong inter-
actions. In this way we have almost explained the underlying SU(2) x SU(2) symmetry
of the sixties. The only problem is that that we have arrived at U(2) x U(2) instead of
SU(2) x SU(2). The difference is essentially a group U(1) x U(1). One of the U(1)’s is
no problem: it is the hadron number, which is conserved. It was just too trivial to be
included in the discussion in the sixties. The other U(1) is associated with the abelian
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chiral transformations €’ and is not observed in nature. One obvious solution is to
assume that this symmetry is spontaneously broken like the chiral SU(2) part of U(2).
This would however mean that we should observe a fourth low mass Goldstone boson,
in addition to the three pions already associated with the spontaneously broken chiral
SU(2). The natural candidate, the 1, has however a mass m, much larger than the pions.
The U(1) problem was the following: What has happened to the fourth Goldstone boson?

The answer (due to ‘t Hooft) is that the classically conserved current associated with
the abelian chiral transformation has an anomaly. In addition this anomaly is embedded
in a non-abelian gauge group (SU(3)-color) and due to field configurations with non-
trivial topology we have to consider the symmetry as explicitly broken. This means that
there is no need for a light fourth particle.

8.5.4 Consistency relations in model building

As discussed above, theories with chiral fermions coupled to gauge fields have potentially
a problem due to the possibility of a clash between the requirement of gauge invariance
and the anomaly. Let us consider as an example the standard model where all fermions
are chiral. The SU(3) part causes no problems since right-handed and left-handed com-
ponents contribute oppositely. In the electroweak group SU(2) is a safe group according
to the remarks following (8.99). Therefore potential problems come from the hypercharge
U(1) group. There are two dangerous triangle diagrams, one diagram with one U(1)-field
and two SU(2)-fields and one triangle diagram with three U(1)-fields® If we first consider
the two SU(2) and one U(1) gauge fields only the doublets contribute, since only they
couple to SU(2) gauge fields, and from (8.98) we get

> Yitro®e’=0, ie. Y. Y, =0. (8.108)

doublets doublets

The triangle diagram with three U(1) fields yields, again from (8.98), the condition:

> YyP — > Vi =0, (8.109)

left—handed parts right—handed parts

where the summation over left-handed parts means that each of the two components of
the doublets should be counted and in addition other degrees of freedom like colour should
be counted too. The assignment for the standard model is

Y, =1/3, Yg(1)=4/3, Ygr(2) =-2/3 for quarks

Y =-1, Yg(1)=0, Yg(2)=-2  for leptons (8.110)

One can check that (8.108) and (8.109) are satisfied provided quarks exists with three
degrees of freedom. These are provided by the color quantum numbers. While (8.108) is
trivially true, we get for (8.109):

l?, X 2 X (%)3 +2 x (—1)31 - l?, X <§>3 +3 x <—§>3 + (—2)31 = 0. (8.111)

3They actually reduce to the same condition due to the relations between the Y7’s and the Yz’s in
the standard model.



Chapter 9

Lattice Field Theory

9.1 Field theories as critical classical spin systems

In the following we will always assume that we are working in d-dimensional euclidean
space. The lagrangian for a scalar field will be

1

£(6) = 5(0:0)* + V(9) 1)

and the partition function (the generating functional for Greens functions ) can be written:

2(0) = [y s

_ /D¢ o= J dla(L(@)+0T) (9.2)

The measure “D¢” is the Feynman path integral measure and is ill defined as it stands
in (9.2):
Do = T[ do(r) . (9.3

rERI

To make sense of the measure one can discretize euclidean spacetime R? by imposing a
hyper-cubic lattice structure:

T = Ty =ane,

Doy — Hdd)n
06 = (Ot + ) — 9(a) = - (Gnsu— ) (9.4
S6.0) = [ (@0 +V(9) +J0)

o D5 X G0 = 4 V() +
n 7

In these formulae ¢, denotes d orthonormal vectors and “a” the lattice spacing. If one
takes a finite volume V' of spacetime, the measure D¢ is converted into a finite dimensional
integral ]V d¢, and one can study the limit V' — oo.

227
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This regularization of the path integral breaks euclidean invariance. But we have
obtained a strict control over the short distance singularities of the theory, since we have
an ultraviolet cut off A = 7/a. Furthermore it turns out that internal symmetries, even
local ones, can usually be preserved in a natural way. This is especially important if we
want to address gauge theories. I the following example it is shown in detail how the
lattice regularization modifies the continuum propagator (p®> + m?)~! and at the same
time provides an ultraviolet cut off A = 7/a.

Example 1

Let us first record the formulas for Fourier transformation on an infinite lattice:

T d o
den) = [ e i) (9.5
M) = Lat e g(a) (9.6

where the restriction in the integration range comes from the lattice structure of space-
time: Since x, = n a the function exp(ipz,) is a periodic function of p, under p, —

pu + 2m/a. The same is therefore true for $(p) as define above.

Recall that we got the continuum free propagator from the gaussian part of the action by
Fourier transformation:

d _ 52 2 _ d’p 2 7
[ dtee@)=0} +m?lox) = [ G +m?i) (9.7

From (9.4) it follows that the lattice equivalence to (9.7) is

- o dp —2cosa ~
Sl (=i )b = [ 5 - %ZEJ%—&+m%amw&

a

Here the difference operator A, ,, on the lhs is the discrete laplacian and is given by

Apm = Z (Ontfym + On—jiym — 20n,m) (9.9)
N

and the rhs follows by inserting (9.5)-(9.6) and using

Z d ,iptn _ )d(g(d)( ) d . ﬂ i(Zn—Tm)p _ ié (9.10)
a p) an . (27r)de —a0n.m .

We finally get the following modification of the continuum propagator

1 a?
9.11
p? +m? ~ 4sin?(ap/2) + (am)? (9.11)
while the momentum p is cut off at 7/a.
Let us consider a ¢* theory in d dimensions:
1 1 A
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By scaling the fields and sources and coupling constants:
A = g2a®™, ¢ = ga%_lqﬁ, J = ga%HJ (9.13)

the partition function (9.2) may be written:

.
2(09) = llg~'a™ @) [ Hd¢ exp(=S(/, 1) (9.14)
1 1 1
S6.7) = 3§ Sk~ 07+ gl + o+ L6,
n o :

The free energy (the generating functional for connected Green functions) of the system,
F(J) is defined by:
Z(J)=¢e TV (9.15)

and the constant in front of the integral in (9.14) only contributes to F'(.J) with an additive
constant proportional to the volume, but with no reference to the dynamics. It can be
dropped.

We can view (9.14) as the partition function of a classical spin system. Indeed, an
effective, classical theory of spin-spin coupling in a ferromagnet would have the following

hamiltonian:
— Z Un,mSn = Sm + I - Z Sp (9.16)
n,m n
and partition function

Z(h, 3) = / [ dsn plsn)e BH(sh) (9.17)

In (9.16) vy, is the coupling of spins at sites n and m in the lattice. If we assume the
lattice is hyper-cubic and we only have the nearest neighbour interactions, we can write

- Z Un.mSn * Sm = K - Z (Z(STH»# - Sn)2 — 2d82> . (918)
n,m n I

In (9.17) 8 = 1/kT and p(s,) is a weight factor describing the local, microscopic properties
of the spin. Since we assume the spins are classical, we have to define the concept of spin.
For instance we could assume that the spin is a vector, constraint by s? = [(l +1). A
model with this constraint is called the Heisenberg model. A toy model which has played
an important role in theoretical considerations (mainly because it can be solved explicitly
in two dimensions) is the Ising model where s is a scalar, which can take the values +1.
A choice like

p(sy) o< exp(—(ks2 + Ast)) (9.19)

gives a convenient effective description. An appropriate choice of of k and A (typically
k < 0) allows us to approximate the model mentioned with any desired precision. The
partition function may now be written as:

Z(K, i, A h) = /Hdsn H(sE A

H(s; K,y A h) = Z[mmz(sw—sn>2+u(ﬂ>si+A(ﬂ>si+hsn - (9.20)

n
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(@ (b)

Figure 9.1: Potential u(3)s? + A(3)s? for (a): u(B) >0 and (b): u(B8) <0

The Ginzburg-Landau theory of ferromagnetic transitions assumes that K(f3), u(5)
and \((3) are smooth functions of the temperature since they depend only on local prop-
erties. The ferromagnetic transition occurs at p(f.) = 0. The value of T, for which
w(B:) = 0, is called the critical temperature T,. Minimizing the effective hamiltonian in
(9.20) we get a ground state where all s, =0if p > 0 (see fig.9.1a):

1
<S>EVan:0 for wu(B) >0 (9.21)

while the ground state for () < 0 corresponds to all s, aligned with s, = /3¢
(see fig.9.1b):

<S>E%;Sn:\/;—§f for p(B) <0 . (9.22)

As we assume p(/f3) is a smooth function near 3. we might write:

u(B) = co(B—Be) for BB, (9.23)

and we get:
<s>n~y/B—0, for (>0 . (9.24)

This shows the typical non-analytic behaviour at a phase transition.

If we compare our partition function for the scalar field (9.14) with the one for our
spin system (9.20) we see that the continuum limit of our regularized field theory (a — 0)
corresponds to approaching the critical point of the ferromagnetic transition (p(3) — 0)
because of the identification

m?a® ~ u(B) . (9.25)

It is therefore not surprising that all the machinery and intuition available from the
theory of critical phenomena can be taken over to field theory. Let us briefly summarize
the notations used: near the critical point the following observables are of interest (among
others):
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1
<s>(h,B) = v > < sp> (magnetization)
1
x(h,B) = 637;> =7 < (sp— < 8 >)(sm— < s>) > (susceptibility)

< (= <5 >)(sm— < 5>) >~ exp(—|an = 2l /E(h, §)), (correlation length)
§(h, ) < |on — 2|
< (= <s>)om=<s>) >~ an —am[HH, (anomalous dimension 7)
a K |z — x| < E(h, B)
(9.26)
The behaviour of these quantities is obviously governed by the spin fluctuations and the
correlation length £ is of crucial importance. The hypothesis that all singular behaviour
near the phase transition is due to the divergence of the correlation length £ is called
a scaling hypothesis. In the gaussian approximation where we only include quadratic
fluctuation around the minimum (9.21) or (9.22) in our functional integral it is easily seen

that )
E(h,B) ~ ——— 9.27
9 |u(h, B)] %20

and £(h, ) diverges near the critical point.
The singular behaviour leads to the definition of critical exponents, characterizing it:

X(B) ~ [8=B
(9.28)
EB) ~ 18=B™

and by using the assumption that the behaviour of the correlation function is governed
by only one divergent parameter near the critical point it is possible to show that

y=v(2-"n) (Fischer’s scaling relation) . (9.29)

We will prove this relation later.

It should be stressed that these exponents are not just mathematical definitions. One
can measure 7, v and 7 in materials like Fe, Ni, YFeOj3, Gd, etc. using neutron diffrac-
tion and other experimental techniques. The remarkable fact is that they are identical
even if the materials mentioned of course have different p(s,) and 3=, ,, Vam - spsp and
vastly different 7,.. Only few sets of distinctly different values of these critical exponents
are observed and each set satisfies scaling relations like (9.29) very well. The universal-
ity of the critical exponents extends even further. The same critical exponents can be
observed in ferromagnetic transitions and certain liquid-vapor transitions. Since these
critical exponents are connected with a divergent correlation length &, we see that long
range phenomena near the critical points show universality.

For field theory this translates into the statement that the details of how we regularize
the theory at lattice distances are to a large extent irrelevant for the continuum limit.



494 LAl 110 rfiiid/ 1 arnJinvy
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Figure 9.2: A Kadanoff blocking for the scale s = 2 on a cubic lattice

Only few parameters are relevant and they determine the continuum limit. Different
possibilities of taking the continuum limit of the reqularized theory are labelled by different
critical exponents and are said to belong to different universality classes.

For this reason it becomes of major importance in field theory to understand which
universality classes can exist, and the basic tool for understanding the whole concept of
universality is the renormalization group equations (RGE). Today it has been combined
with Monte Carlo techniques used in large scale computer simulations of these theories.
On the configurations generated by the computer it is possible to carry out the renor-
malization group transformations and one talks about the Monte Carlo renormalization
group approach. It is fair to say that MC-techniques are the only general tools available,
if we want to explore non-perturbative aspects of field theory for dimensions d > 2.

9.2 Renormalization group and critical phenomena

9.2.1 Kadanoff blocking

The renormalization group approach to critical phenomena is the simplest way to under-
stand universality. In the following we will drop the distinction between spins and fields
and our toy model hamiltonian will be

In a socalled Kadanoff transformation we divide our original lattice in blocks of size
s? where s is an integer, and define an average field in the block B,(n’) labelled n’ (see
fig.9.2):

w=s" > dn . (9.31)

’I’LEBS( )

The distribution of ¢/, can be determined from the one of ¢, :

= [TLdone "L 5™ 3 ) - (9.82)

n€Bs(n')
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We end by scaling the blocks back to the original size:

T x/s
Ps s 5 a=(d-2+n)/2 (9.33)
Hy(¢s(z5)) = H'(¢'(2))

If we measure the correlation length £ in lattice units it has been decreased by s :

&=¢/s . (9.34)

The need for the factor s on ¢ may not be evident, but recall that near the critical
point the correlation length £ diverges, the theory has “almost” massless excitations, and
the correlation function will have a power law fall off (9.26):

1

Consider now the block transformation (9.31):

CHby> = <5t Y b5t Y bu>

n€Bs(n') meB,(0")

(9.36)
~ < ¢sn’¢0 >

since all the s2? correlation functions are at essentially the same distance if n’ is very
large. From (9.35) we see that the short distance! properties of correlation functions are
only left unchanged by blocking if we at the same time scale ¢’ by s*. The need for such a
rescaling can be related to the wave function renormalization encountered earlier when we
discussed renormalization and we shall later see that the anomalous dimension 7 in (9.33)
or (9.35) is nothing but the anomalous scaling dimension introduced when we discussed
the renormalization group earlier.

The form of H,(¢s) is not identical to the one of H(¢) in (9.30) which was the starting
point. Other terms like

(¢n+u - d)n)Qd)i ) (¢n+u - 2¢n + ¢n+u)2 (9'37)

will be generated. As we want to repeat the Kadanoff blocking it is therefore natural to
start with a completely general action:

H[¢] = KaiSa(d) . (9.38)

where S, (o = 1,2,...) are different actions which should conform with the original

symmetries of the action and lattice. The couplings K, now take values in a multi-
dimensional (in principle infinite-dimensional) coupling constant space, and successive
blockings can be viewed as a mapping of this space onto itself, called the renormalization
group transformation Tra(s).

Tra(s) @ {Kua} = {(Tra(s)K)o} - (9.39)

'Short distance still means large compared to the lattice spacing a
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The argument s refers to the block size and the ”group” structure enters since the block
size s - $3 can be obtained by successive blockings: Tra(s2)Tra(51) = Tra(S152). Strictly
speaking we only have a semi-group, since there will not necessary be an inverse Tra(s).
One can understand this from the point of view of physics, since we are reducing the
degrees of freedom by blocking.
The operator Tr;(s) might have certain fixed points K%. For such a fixed point we
have
(Tra(s) K)o = K Va (9.40)

and it follows from (9.34) that the correlation length must be infinite (or zero) for this
choice of coupling constants. The fluctuations extend over all scales of the lattice and the
system is critical.

To each fixed point K we can associate a critical surface, namely the points K, which
are attracted by the fixed point K} :

(Tha(s)K)o — K for n — oo. (9.41)

The important point of the blocking is that we perform a coarse graining of the system.
By taking the average over blocks we ignore short distance details, but keep long range
phenomena intact.

Every point on the critical surface corresponding to K has infinite £ (since blocking
reduces correlation length and the fixed point to which the point converges also has £ = o0)
and the long distance physics for any point on the critical surface is therefore expected to
be identical to the long distance physics determined by K.

The fundamental hypothesis linking RGE to critical phenomena s that the couplings
of the material in question (Fe, Ni, etc.):

Ko (B) = (K(B), u(8), A(B), - ) (9.42)

belong to a critical surface when 3 = (. (T =1T,).

If we now assume (as will be justified in the next sections) that (1): Critical surfaces
are expected to be large subspaces of the total infinite dimensional coupling constant
space {K,} and that (2): The critical exponents are determined by Trg near the fized
point, we can understand universality: different materials “s” at their critical points ﬂgi)
can be represented by vastly different K éf) in the coupling constant space, but they will
belong to the same critical surface (i.e. have the same fixed point K*) and consequently
they have the same long distance physics.

9.2.2 Expansions near a fixed point

Suppose that a point K, is near a fixed point K. When Ty acts on coupling constants
which are close to the fixed point, we can approximate it by a linear operator, since the
changes induced by the operator are only small:

K, = K’+0K,
(9.43)
(Tre()K)a = Ki+> TowdKo + O((0K)?)



J.o nnINURviAblZA L ITUIN GRUUE /UNRLLIUAL PHARINUIVIERINA 499

If we expand 6K, in eigenvectors of the linear operator T, :
6Ka = Z haVaa
a

Z Taal Vool — )\avaa (944)

the action (9.2.1) can be written:
Hlg] = H'[¢]+ Z hev®[¢]
H*[g] = %:Késa[dﬂ (9.45)
vald] = Xa: VaaSal@]

Repeated application of Tgq will give:

H[¢] = H* @] + > Aghav®[g] . (9.46)

Interactions with \* < 1 are suppressed after a few Trq steps. They are called irrelevant.
Interactions with A > 1 are called relevant and they will eventually take us away from the
critical point provided the decomposition of d K, contains these components. Finally the
interactions with A* = 1 are called marginal. Whether they will contribute or not can only
be decided by considering higher order corrections to the linearized Tgs transformation
given by Tyg.

We realize that the critical surface in the neighbourhood of K is spanned by the irrel-
evant operators v*(¢).

If we are close to the critical surface, but not exactly on the surface, the coefficients A,
for the relevant operators must be small. If we block we will first move towards the fixed
point K since the irrelevant operators dominate, but eventually when n, the number of
blockings, is large enough we will have Ah, > 1 for the relevant operators and we will be
taken away along the direction of the largest relevant operator. This relevant direction is
called a renormalization group trajectory. The flow near K is illustrated in fig.9.3.

If there are n relevant operators at a given fixed point we will denote it by FP™ and
it will require the tuning of n parameters to reach the critical surface. If there is only one
relevant operator we can reach the critical point by changing any of the coupling constants.
In the laboratory the tuning is performed by changing, for instance, the temperature. This
will create a flow of K, = (K(3), u(3), A(f),...) which eventually will cross the critical
surface if the system has a ferromagnetic transition.

In the context of model calculations on a computer one can check the above mentioned
picture. Since we have a detailed knowledge of the configurations which we generate by
MC-simulations, we can perform the blocking and actually follow the flow in the coupling
constant space {K,}.

With respect to actual materials like Fe, Ni, Gd, etc. the coarse graining implemented
by Tre is a purely mental process which allows us to understand universality. We can,
however, give the following qualitative description of the use of Trg. Suppose we look at
a sample of a ferromagnet through a microscope and that our eyes can see spin variations
down to a certain size. Then Tgq represents the operation of decreasing the magnification
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critical line

sz

renormalization
group trajectory

fixed point

&y,

Figure 9.3: RGE-flow in the neighbourhood of a fixed point. The critical surface is usually
multi-dimensional

factor of the microscope by the factor s which entered into the definition of block By, i.e.
the sample observed appears to shrink by a factor s. Assume now that we have brought
one of the materials to its critical point. The hypothesis that this critical point lies on a
critical surface characterized by a fixed point { K}} translates to the statement that if we
decrease the magnification by a sufficient amount, we shall not see any change by a further
decrease. In addition the long range spin fluctuations which we observe at this stage are
the same for all materials associated with the same critical surface. The underlying short
distance structure depending on a specific lattice and microscopic details of the material
has faded away, and only universal long range phenomena survive.

9.2.3 Ceritical exponents near a fixed point

It was essential for some of the arguments given above in favour of universality that the
critical exponents were determined by the fixed points. We will now show that this is the
case.

Let us for simplicity assume that there is only one relevant direction. We will denote
the correlation function < ¢(x)p(0) > by G(z). z always refers to a lattice point. If we
are close to the critical surface and to the fixed point itself, we can repeat the discussion in
the last subsection and write the linearized renormalization group transformation Trq(s):

Ka — K; + Z Uaiahai (6)

(Tra(s)K)a = K+ Aarha, (B)vara + i Aaiha; (B)Vasa + O(h2) (9.47)

1=2

hal(ﬂ) = (ﬁ - ﬁc) hgl + O((ﬁ - 50)2)‘

The notation is as follows: v,, are eigenvectors for the the linearized operator Trg(s) of
blocking with block size s, as defined by (9.43) and (9.44). \,, denote the corresponding
eigenvectors. The first one is defined as corresponding to the relevant direction and has
Aa; > 1, while the rest correspond, by assumption, to irrelevant directions and have
Ae; <1, @ =2,3,.... Recall that the critical surface is defined as being spanned by the
irrelevant directions, i.e. characterized by h, (#) = 0, a requirement which fixes 3 = £,.
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Since we, again by assumption, are close to the critical surface the function h,, (3) must
be small and we have the expansion of h,, (3) given above.
After n repeated blockings the iteration of (9.47) looks as follows

(Tha(s) K)o = K, + )‘Zl ha, (B)Vaya + (9()\21_) (9.48)

Although the coefficient h,, (3) was small compared to the other coefficients h,, (3), re-
peated application of the renormalization group transformation Trg(s) will ensure that
only the relevant operator dominates since only \,, > 1. After sufficiently many RG-steps
we will be on the RG-trajectory, and continued RG-steps would move us away from the
fixed point. We now counteract this in a well organized way by adjusting 8 — (.. Since
the correlation length changes with a factor s for each blocking this will relate the change
in 3 to the (change in) correlation length. First we note that since \,, > 1 we can write

Aoy =57, v >0. (9.49)

The (semi-)group property of Tri(s) ensures that it is a sensible definition, i.e. that v is
independent of s. Next we choose a sequence of 3, converging to (. such that

1 = hg, (B,) s™ (9.50)
or (by (9.47) and (9.49)) when we are close to f3:
1
s" = 9.51
[CRREAYEAT (%51

This choice of 3, is made such that that repeated application of the renormalization group
transformations keep us at a well defined distance from the fixed point. In fact we have
from (9.50) and (9.47)

(Tha(s)K)q — K. 4 v, for n— o0 (9.52)
From the definition of blocking we have (when z and x/s" > a):
G(zi{Ka}) = s *G(2/5:{(Tra(5)K)a)}) = s "G (2/s" {((Tha(s)K)a})  (9:53)

where the scale factor « is the one associated with the rescaling of the fields after blocking
(recall (9.33)-(9.36)). Since {((Tha(s)K)q} for sufficiently large n has no n dependence,
according to (9.52), the correlation function G(z; {K,}) will for such choices of /3, only
depend on x/s™ for large x. . If we compare it to the generic form of the two-point
function (see (9.26))

G(z; {Ka}) ~ exp(=|z|/£(B))
we are led to the conclusion that £(3,) ~ s", or stated differently: for sufficiently large n

the condition (9.50) amounts to increasing the correlation length £(3) by a factor s when
changing B, to [B,+1. This implies

1
“ e —
|ﬁ - ﬁc|y
and the v introduced by (9.49) can be given the interpretation as the critical exponent v

defined by (9.28). Further we see that the critical exponent v is related to the (largest)
relevant eigenvalue by (9.49): Ao, = 57

£(6) (9.54)
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(9.53) can now be written as

G(z; {Ka(8)})]s-p. = & *(B) G(2/6(8); {KL + Vara}) (9.55)
or by a Fourier transformation, using o = (d — 2 + 1) /2,
G(pi {Ka(B)D)]s-p. = £7"(8) GEB)D {KZ + Vara}). (9.56)

Also 7 is determined by the fixed point. In fact, as already mentioned, s™* is the
unique scale factor for the field ¢ which leaves the behaviour of the G(x, K,,) invariant at
the critical surface. Stated differently we can say only one, or very few, choices of n will
result in a fixed point for our chosen RG-transformations.

Finally the critical exponent 7 is also determined from (9.55). From the definition
(9.26) we get the susceptibility by integrating G(x) over z (the magnetization m is assumed
Z€ro):

WB) = [daG {Ka(®))
= &% [ deG/€B); K] + vua)) (9.57)
= 2t [dyGly s {Kg+ vwa))
or, since the last parenthesis has no 3 dependence:

(B—B)7" =B =(B—B)C (9.58)

which is Fischer’s scaling relation v = v(2 — 7).

A result like this is typical for renormalization group- or scaling arguments. It is
possible to derive relations between the critical exponents, but only in a few simple models
can the exponents themselves be determined.

9.3 The continuum limit

9.3.1 Definition of the continuum limit

In this section we will discuss in more detail the approach to a critical point belonging to
a critical surface, and how this approach relates to the usual renormalization known from
field theory.

We use the formalism developed in the last section. As we have argued, the long
distance physics of all points on the critical surface is identical and determined by the
fixed point. In this connection it should be mentioned that the position of the critical
point is dependent on the renormalization group procedure used. We have considered here
the socalled Kadanoff blocking, since it has a direct physical interpretation as taking
the average over fields, and in this way coarse graining the system. However, one is
free to choose other procedures which reduce in a systematic way the degrees of freedom
associated with short distance fluctuations. The critical surface itself (i.e its position in
the infinite dimensional coupling constant space) is independent of the Trg procedure
used, as is the long distance physics associated with the surface, but essentially any point
on the critical surface can serve as a fixed point if the procedure is chosen appropriately.
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The central formulae derived in the last section were (9.55) and (9.56). However, all
distances involved were expressed in units of the lattice spacing a, since our starting point,
the Hamiltonian (9.30), had no reference to a. Clearly, (9.55) and (9.56) cannot be true if
n # 0 and we introduce the length scale a. For this reason it is convenient to distinguish
between correlation length measured in lattice units, i.e. number of lattice spacings, and
correlation length in physical space. We introduce

Eon = Ga,  Tpn =@, ppr =pi/a (9.59)

It is now possible to define a continuum limit without any reference to the lattice in the
following way: Until now we have assumed a fixed lattice, which we could even associate
with some solid state spin system. Let us now return to the starting point and consider
the lattice as a cut off device. This means we are free to change the lattice spacing a.
We now require that the physical correlation length &y, is kept fized while we approach the
fized point the way described in the last section. Since the lattice correlation length & is
increased by a factor s for each step 3, — 3,41 in the approach to the fixed point, the
requirement of a fixed &, imposes a reduction of the lattice spacing a — a/s. In this way
the fine tuning § — [, is turned into a scaling a — 0 and we can replace 3 by a. If we
define the mass parameter of the theory as the inverse of the physical correlation length

Mpp = 1/§ph (960)

we can define the continuum correlation function as follows

Gcont(pph; mph) = ainG(pl; {K(a)})|a—>0 (961)

This relation is nothing but the relation between the renormalized correlation function
Geont(+), which has no reference to the cut off 1/a and the "bare” correlation function
G(-) which is still defined by the lattice parameters. The divergent factor a~" is the
wave function renormalization, and it has the following origin: If we wanted to introduce
a correlation length &, instead of & in (9.56) we would make a mistake if n # 0, for
simple dimensional reasons. In the process of blocking, the parameters with dimensions
of length, associated with all the irrelevant coupling constants, must sneak in and ensure
the correct dimensions on both sides of (9.55) and (9.56). These irrelevant couplings are
not important for the long distance physics (as their name tells us) and they are associated
with short distance physics, in fact physics at the scale a. The only way they will show
up in the long distance physics, is as an overall factor ™" in scaling relations like (9.56).
The factor a™" is precisely what is needed in order to be able to write (9.56) in terms
of physical correlation length, since the dimension of G(p,,) when the lattice spacing is
explicitly introduced must be -2:

G (ppn; {Ka(B) D)5, = 0" 1" G(Eonppn; {5 + vara})- (9.62)

This equation shows explicitly that the limit (9.61) is well defined and independent of a.
The above construction for the two point correlator can be generalized in a straight
forward manner to the n-point correlation function.
Let us emphasize once more the important points in the above construction:

(1): At the fixed point the theory is scale invariant (massless).
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(2): We had one relevant coupling constant, say (K,). By choosing some values of
K, K,, ... we got to the critical surface K, = {0, Ky, Ky, ...} by fine tuning of the
relevant coupling. The physical correlation length &,, = 1/m,y, is related to the
correlation length & measured in lattice- or cut off units a by

L = é-ph = §la . (963)

mph

and by the requirement that m,;, was unchanged during a blocking we could relate
the renormalization group transformation to a change in cut off a and fix the fine
tuning of the relevant parameter: K. The important point is that the massive
continuum theory, i.e. the theory with a finite correlation length, is defined not at
the critical point but by the fine tuned approach of the relevant coupling constant
to the critical surface. The same would be true if we had n relevant couplings. By
fixing the physical value of these as in (9.63) the requirement that (long distance)
physics is invariant under the renormalization group transformation Tgqg, when we
are near a critical surface, would fix the fine tuning of the relevant parameters in
terms of the cut off ”1/a”. Such relations, describing the change in the bare coupling
constant under a change of cut off while keeping physics constant, can be viewed as
the origin of renormalization in quantum field theory.

(3): At this point it might be confusing why we in general moved out in the infinite
dimensional coupling constant space when we did the blocking in the last section.
When we renormalize field theory we usually adjust only a few coupling constants.
The renormalization group transformations in the continuum did not lead us to an
infinite dimensional coupling constant space. The reason for this difference is that
the blocking procedure is much more precise than is needed for describing the long
distance behaviour. A blocking as defined here ezactly reproduces all predictions for
the variables which are not integrated over by the blocking. The expense is that one
has to enter into an infinite dimensional coupling constant space. We could, and that
is often done in computer Monte Carlo simulations, approach the continuum limit
by just changing the few relevant couplings in the simplest discretized version of the
continuum action. We would then have no control over the change in correlation
length when changing the couplings, but we could of course either try to measure
the correlation length or try to calculate it. It is usually not easy to calculate the
change in correlation length, but it might be feasible near a critical point.

9.3.2 The gaussian fixed point

The most important fixed point is the gaussian fixed point. It is the point in coupling
constant space where all coupling constants, except the one in front of the pure gaussian
term, are tuned to zero. The virtue of this fixed point is that we know it exists, and that
one can perform the ordinary perturbation theory around it.

It is instructive to consider the purely gaussian case. If we perform the blocking, the
action will after a few steps contain next to nearest neighbour interactions, which will
result in higher derivative terms etc.. This illustrates one basic problem with the RGE’s
on the lattice. It is almost impossible to do any analytic calculations. Their importance is
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to be found at the conceptual level?, since they provide us with new insight in the process
of renormalization and link the critical phenomena of solid state physics to relativistic
field theory. Rather than carrying out the analysis on the lattice (which can be done
in detail in the gaussian case), it is convenient for the purpose of illustration to return
to the continuum formalism, but with the insight provided by the lattice RGE’s. By
doing this we appeal to the remarks of the last section, where it was stated that the
long distance physics associated with a critical surface was independent of the specific
blocking procedure used, as long as it provided a systematic reduction of the degrees of
freedom associated with short distance physics. We have seen that the lattice introduces
a momentum cut off

A=7/a (9.64)

If we use the same cut off notation in the continuum, a reduction of A corresponds to
larger lattice spacing and therefore, in a not very precise way, to a coarse graining. In
this way we get a kind of blocking by integrating out the momenta between A and A/s,
where s > 1 is a scale factor. In the following example we perform this kind of blocking
in a generalized gaussian model where higher derivative terms are included. This model
is sufficiently general to allow an illustration of many of the concepts introduced in the
last section.

Example 2: The generalized gaussian model

We consider the generalized gaussian action:

- 1 rA -
gl = 5 [ d'pie)DE)d-p)
D(p) = Ko+EK1Y pp+EKD po)° +Ks> pj+- . (9.65)
0 0 B

Note that we have even included terms which break rotational invariance, in order to stay
close to the lattice version.

By changing to dimensionless variables
g=a-p, $la) =a > Vg(p),
KU = G,Zf((), K1 = f(l, K2 = a72l~(2, e (966)

we get

g = [ dad@D@d-a)
(9.67)
D(q) = Ko+Ki1) ¢ +EK:(D> aq)’+
1 u

Let the RG procedure in momentum space be the integral over the high frequency part:
m/s < q < m. In the gaussian case this is a triviality since different momenta do not

2It is not true any longer that they only have importance at the conceptual level. As already mentioned
the fast computers of today allow us to carry out the blocking in a very concrete way and test with success
the ideas involved.
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couple. We can write the path integral as follows
z = / D¢(q)eﬁ J7 da (D@~
= [/ Dé(q S+ 4290 ] [/ Do(q ~1 [™* dq (a)D(9)b(~q)

— C(s,{KD) /D¢ ™% dq $(a)D(@)#(~0)

The factor C(s,{K}) does not have any reference to the field components ¢(q), |q| < 7/s
and will factor out in any correlation function of such field components. We therefore

ignore it in the following. If we follow the conventions of the last section and introduce
the ”blocked” field

d+2—n

bs(sq) = s> ¢(q) (9.68)
we can write (again ignoring a s dependent normalization factor)
Z = /D¢ e~ Hs] (9.69)
where (again in the notation of the last section)
1 ™
Hg) = 5 [ d'4.@D@d(~0) (9.70)
Ds(q) = Kos" "+ Kis™"Y g+ KosTP(Y_qp)” +
t 1

From the last equation we read off the RG transformation Trq(s):
Tra(s) : {Ko} = {s* Ky ,s7"K; ,s 2 "Ky,---} (9.71)

and we have a fixed point at:
K} =1{0,K;,0,0---} (9.72)

provided nn = 0. This point is called the gaussian fized point. The value of K is arbitrary.
If we fix it to one, the action (9.65) -(9.67) defines the massless free field in the continuum
in the limit where a — 0.

We observe the general pattern already advocated: The relevant directions are few, in fact
there is only one corresponding to K, there is one marginal coupling, K7, and the rest of
the couplings Ks, K3, ... are irrelevant. This is a simple illustration of the statement that
the critical surface, which in this case is given by K, = {0, 1, Ko, K3, ...} is large, in fact of
finite co-dimension. Note also that the massive free field theory is obtained by a fine tuned
approach to the critical surface, by the procedure of the last section. Each ”blocking” will
increase Ky by a factor s2 as is seen from (9.71). We are on a RG trajectory and are
taken away from the fixed point. We have to compensate for this, as described in the last
section, by adjusting the relevant coupling K closer to the fixed point: Ky — Ky/s2. In
this way we stay at a fixed distance from the critical surface during the blocking, but since
the physical mass m,, = 1/, is related to Ko by Ky = mghGZ, as is seen from (9.65) and
(9.66), such a change in K, implies a change a — a/s in the original cut off a provided
the physical mass myyp, or the physical correlation length &y, is kept fized. In this way we
get the continuum massive theory when the ”lattice spacing” a is taken to zero.

A final point worth noticing is that terms associated with the breaking of rotational
invariance (3, pﬁ etc.) are all irrelevant terms. This is how euclidean invariance is
restored when we approach a fixed point.
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The message from the above example is that the coupling constant K, in front of the
a generalized gaussian term K,S, given by

Ko [ d'a(0ko(x))?
will scale as follows under a blocking of size s:
K, — s %K, dg =-2+2k

This dg, is nothing but the engineering dimension of S,, and it is clear from the example
that it is obtained simply by the replacement z — z/s, ¢,(z/s) = s(4=2/2¢(z) required
by blocking. When we are very close to the gaussian fixed point the same is true for
possible interaction terms like \ [ d?x¢*(z). To a first approximation, when the coupling
constants are very small, one simply replaces x — 2/s, ¢,(z/s) = s*2/2¢(x). This is
however only true to the very lowest order in A, as is clear from the functional integral.
The action is no longer diagonal in the momenta, and different scales mix. However, to
the very lowest order we can ignore this mixing, and we find again that an action like

K, [ d'zg(x)
will result in the following scaling of K, under a blocking of size s:
K,—s ™K, d,=(d-2n/2—d

Since d,, again is nothing but the engineering dimension of the action and the eigenvalue
of the linearized RG-operator Tge(s) in this direction will be

Ap =S

we see that the relevant interactions near a gaussian fixed point are precisely the interac-
tions which make the theory super renormalizable, while the marginal interactions are the
ones which make the theory renormalizable. All irrelevant interactions spoil renormaliz-
ability. In the last chapter we classified the renormalizable scalar theories. They were
finite in numbers in all dimensions larger than two, and we therefore have a proof that
the critical surface of the gaussian fixed point is of finite co-dimension. A similar proof
is not known for other critical points, but is believed to be true, and is essential for the
whole idea of universality.

9.3.3 Triviality versus asymptotic freedom

In d = 4 the operator [ d*z¢* has engineering dimension zero. An operator of dimension
zero will be a marginal operator with respect to the gaussian fixed point, corresponding
to eigenvalue A = s = 1 under a blocking of size s. One has to go beyond the gaussian
approximation in order to discover whether it will become relevant or irrelevant. The
corresponding couplings are called ultraviolet asymptotically free (or just asymptotically
free) and infrared asymptotically free (or sometimes non-asymptotically free), respectively.
The canonical examples are non-abelian SU (V) gauge theories and scalar ¢ theories.
For infrared free couplings one cannot have a renormalized coupling defined at the
gaussian fixed point. (At least not the way discussed here). Let us, for the purpose



4% LAl 110 rfiiid/ 1 arnJinvy

of illustration, define the renormalized coupling as the value of the bare coupling after
applying n blockings such that

s"a = fixed physical distance. (9.73)

When the cut off 1/a — oo it is clear by definition® that the renormalized coupling is
smaller than the bare coupling, since the corresponding term in the action was irrelevant
with respect to the gaussian fixed point. At the gaussian fixed point the bare coupling
is taken to be zero and the renormalized coupling will be even closer to zero. Therefore
theories with only infrared free couplings cannot define a non-trivial continuum field
theory at the gaussian fixed point*. They could, however, have other fixed points where a
non-trivial theory could be defined. A search for such fixed points is therefore of outmost
importance in these theories (like ¢*, ordinary QED, etc.). At the moment there are no
convincing indications that such points can be found in d = 4.

For ultraviolet asymptotically free theories the gaussian fixed point is much more inter-
esting since the renormalized coupling is larger than the bare coupling. One therefore has
a chance that even if the bare coupling (by definition) is taken to zero when approaching
the fixed point, the renormalized coupling might remain finite and in this way define a
non-trivial interacting theory at the gaussian fixed point. The important function which
controls the approach to the continuum limit is the g-function.

9.3.4 The [-function

Let us for simplicity consider a theory with only one coupling constant ¢g?. For the
regularized version on the lattice the change of this coupling constant will move us along
a one-parameter curve in the multi-parameter space created by blocking. ¢? — 0 will
bring us to the critical surface associated with the gaussian fixed point.

When we are close to the critical surface, the correlation length is large and we can
find a change Ag? in g2 such that it increases by a factor s

J? = P —Ag

(9% = stlg®) - (9.74)

This means that the long distance physics will be the same for ¢’? and ¢? provided we
identify

a(g”®) = Zalg’) (9.75)

It is worth emphasizing that repeated RG-transformations (with the block size s) will
result in a picture shown in Fig.9.4. When the number of blockings n is sufficiently large,
the coupling constant flow starting from ¢? will move along the RG-trajectory and will
coincide with the (n + 1) RG-step starting from ¢'*: it is only the long distance physics
which is identical for the choices ¢2,a(g?) and g%, a(g"?)/s.

3Note that n in this way becomes a function of a

“There might be other ways the define a non-trivial interacting theory at a gaussian fixed point. Since
theories like ¢* (or even QED) have a non-trivial perturbative loop expansion it is somewhat strange
that this expansion should be irrelevant. However, at present nobody knows how to make sense outside
perturbation theory of theories which are not asymptotically free.
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Figure 9.4: Successive blockings starting from g2 (dots) and ¢'> = g2 — Ag? (crosses) such
that a(g”®) = a(¢®)/s

The equations (9.74)-(9.75) define the relation between g and a which leaves continuum
physics invariant when a — 0. This relation is named the (-function:

B(g) = —a d% g(a) (9.76)

This definition of the g-function is not identical to the one given in the last chapter where
we kept the bare coupling constants and the cut-off fixed and varied the renormalized
coupling constants. One could as well have chosen the dual point of view and have kept
constant the renormalized masses and coupling constants and the subtraction point p. In
this way the independence of the renormalized Green functions of a cut-off A (which on
the lattice is 1/a and in dimensional regularization is associated with the less intuitive
parameter £) would translate into a renormalization group equation for the ”bare” Green
functions and the 8 function involved would be given by an expression like (9.76). In a
perturbative expansion of this f-function it can be shown that the first two coefficients
are the same as for the J-function defined in the last chapter and it can further be shown
that the existence and nature of fixed points are independent of the definition.

The nice thing about the gaussian fixed point is that we can calculate 3(g) for small
g% by ordinary perturbation theory (we will do that later):

B(g) = — bog® — brg® +--- (9.77)

For an asymptotically free theory by > 0, since this implies that g(a) is decreasing when
a is decreasing.

The scaling region is the region where g2 is so small (a is so small) that within a given,
required precision there will be no cut off dependence for physical observables. In the
scaling limit any physical quantity with dimension of mass behaves in a definite way as a
function of g?. Since myy, by definitions (9.63)-(9.75) is independent of a we have:

d
a - My = 0 (9.78)

For dimensional reasons we must have

Mph, = éf (9)- (9.79)
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By inserting in (9.78) we can determine the function f:

() + (9)Blg) =0 o W(f(g) =+ [ (9.80)

and therefore we get
My = gef [7dg'/8(s) (9.81)

The non-perturbative aspect in this formula is the constant ¢ which cannot be calculated
within perturbation theory. Similar formulas are valid for any other physical observ-
ables in the theory, but the ratios between the different constants ¢ are not accessible in
perturbation theory.

9.4 Summary

Renormalization and the renormalization group equations were first discovered in the
context of relativistic quantum field theory. For renormalizable theories the infinities
in the perturbation theory could be absorbed into a redefinition of the bare coupling
constants, while keeping the physical masses and coupling constants fixed. The freedom
of choosing the subtraction point where these physical observables were defined, allowed
us by some scaling arguments to derive relations between the Green functions at different
scales. These relations were called the renormalization group equations.

In this chapter we have seen that the process of renormalization and the concept of
the renormalization group has a very concrete interpretation when the lattice is used as
a mean of regularization of the functional integral. The use of the lattice allowed us to
make contact with statistical mechanics, and the theory of critical phenomena. The field
theory could be viewed as a generalized classical spin system. Whenever this spin system
became critical by a second order phase transition, i.e. a transition where the correlation
length & would diverge, it was possible to define a continuum limit of a relativistic field
theory. All physical masses in the continuum theory would be expressed in terms of the
correlation length (in lattice units) times the lattice spacing. In this way the continuum
theory could be defined as the limiting process of approaching the critical point, which
means increasing the correlation length, while at the same time diminishing the lattice
spacing such that the physical length scale of typical fluctuations stays constant.

The possibility of having a renormalization group equation also becomes more trans-
parent in the statistical interpretation. Since the continuum theory is defined as a limiting
process where the correlation length in lattice units diverges it should be allowed to av-
erage over "blocks” of spin. No matter how large the block size we choose, we should
eventually get the same answer when we approach the critical point. This freedom of
choosing the ”block”-size of spins allowed us to relate Green functions at different scales
and led directly to the renormalization group equations.

9.5 Lattice gauge theories

While the experiments at the large accelerators at CERN, SLAC, Fermilab etc have
provided us with impressive experimental verification of the perturbative aspects of the
standard model, one of the most interesting sectors of the standard model, the low energy
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sector of QC'D, has remained unaccessible for rigorous theoretical results. Superficially
the situation is not so bad: We have been led to a unique theory, the SU(3) non-abelian
gauge theory with quarks and gluons. The theory is an asymptotically free theory of
fermions (quarks) and massless vector particles (gluons) and, according to our discussion
in the chapter on renormalizability of field theories, this is probably a healthy sign, since
the general belief at the moment is that only such theories might have a chance to exist
as fundamental interacting theories in four dimensional space-time, without a cut-off. If
we ignore the current quark masses, which these particles are believed to acquire though
spontaneous symmetry breaking in the standard model, the only masses which can appear
in this theory are the ones generated dynamically. This means that it should be possible to
calculate them as functions of a fixed length scale which we will denote &;,, or ,alternatively,
a fixed momentum scale Ay = &, '. This is true for all excitations in the theory. If it is
really the correct theory we should be able the predict all mass ratios which appear in
the theory, i.e all mass ratios between the hundreds of baryons and mesons which have
been observed. In addition we should be able to explain why we have never seen any
free quarks and gluons. We have already given a heuristic explanation of confinement in
terms of asymptotic freedom in the sense that the asymptotic freedom of the non-abelian
theories means that the effective coupling constant goes to zero at short distances, while
it grows at large distances, thereby “confining” quarks which carry a color charge. We
should however be able to do better than just make these qualitative statements. In fact
the real test that QCD is the correct theory of the strong interactions is that it can also
predict correctly the low energy excitations which we observe. In this respect we have not
been too successful yet.

The lack of success, using standard continuum techniques, in explaining the non-
perturbative aspects of QCD has prompted a brute force approach, where one tries di-
rectly to calculate the functional integral of this theory by use of the so-called Monte
Carlo techniques. The main idea is to formulate a discretized version of the non-abelian
gauge theory, suited for computer, and then use the modern fast computers to calculate
the non-perturbative aspects of the strong interactions. This approach involves a number
of steps

(1): A non-perturbative formulation of the theory. Here a lattice formulation is natural
since we have already seen that a lattice formulation of euclidean field theory pro-
vides us with a non-perturbative definition of at least scalar field theories. Viewed
as statistical systems the possible fixed points in the coupling constant space serve
as candidates for interesting continuum limits. The relevant theoretical framework
to use in this context is the renormalization group approach.

(2): A natural concept of local gauge invariance which fits the non-perturbative lattice
formulation. To find such a formulation appears at first sight to be non-trivial, since
the whole concept of “local” gauge invariance seems intimately linked to continuum
concepts. Furthermore one would expect that the concept of gauge invariance is
of paramount importance. Recall that gauge invariance (in the disguise of BRS-
invariance) was crucial for the proof that non-abelian theories could be considered
as renormalizable field theories. It is therefore a happy circumstance that there
exists a formulation which incorporates in a natural way gauge fields on a space-
time lattice. This formulation, which is due to K. Wilson (1974), is also remarkable
in that the gauge degree of freedom remains as an exact “local” symmetry at any
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step. (We will shortly discuss what is meant by “local” on a lattice).

(3): A sensible way of performing numerically the functional integral over gauge field
configurations. Since we essentially deal with statistical systems on large lattices
this is a problem which is shared with our colleges in statistical mechanics, who
want to study critical phenomena of spin systems. There exist a number of ways
to deal with integration over such “multi-dimensional” systems. Here we will only
describe the most simple minded approach, the so-called Monte Carlo simulations.

We have already described the general philosophy associated with (1). Let us therefore
first concentrate on (2).

9.5.1 Gauge invariance on the lattice

Consider a general gauge group GG. We will assume we have a unitary, finite dimensional
representation of the group. In the real world we have in mind G = SU(3) if we want
to model the strong interactions. If we consider the gauge theory of ordinary electro-
magnetism we will choose G = U(1), while we sometimes for the purpose of simplified
illustrations of non-abelian groups will consider G = SU(2). The total gauge group of a
(continuum) theory with local gauge invariance can formally be written as

Gino = [[ Gs (9.82)

rERI

where we have a copy G, of G associated with each space-time point. (We assume as
usual that we have performed a rotation from minkowskian space-time to euclidean space-
time). In the chapter on classical gauge theories we saw that the natural gauge invariant
observables of the pure gauge theory was the so-called path ordered exponentials:

Uc = tr Pexp 2]{ dr,A,(z) (9.83)
c

where C' denotes a closed path, P stand for the path ordering and A, is an element in the
Lie algebra of G: A, = A{T“, T* being the generators of the Lie algebra. Let us remind
the reader that path ordering means the following: For a given curve C'(t) : t — x,(¢),
t € [0,1] from z(0) to z(1) Uc(t) is the solution of the differential equation

dUc(t)  dz,(t)

The solution is written as
_ . t ldxﬂ(t,) /
Uo(t) = Pexpi ( /0 a2 A (a(t ))) (9.85)

and path ordering refers to the fact that the explicit solution of the matrix equation (9.84)
can be written as

Uc(t) = 1 —|—i/0t dty @y, (1) Ay, (z(th)) +

i2 /Otdtl /Otl dty @y, (t1) Ay, (@(81) Ty (b2) Apy (2(t2)) + -+ - (9.86)
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where & means dz/dt. U satisfies the following composition rule:
Uc=Uc,Uc, , - Ugq (9.87)

if the curve C consists of the parts C1, ..., C,. In the limit where each part C; is infinites-
imal, (dz;), we have the following representation

Uo(t) = lim ﬁ eidorAle) (9.88)
k=0
where z; € dx;, with an abuse of notation. Under a local gauge transformation
A(z) = V(2)A(z)V ! (z) — 0,V (2)V " (z) (9.89)
Uc has the following transformation properties
Uc(t) = V(z(t))Uc(t)V ' (2(0)). (9.90)

Especially we see that (9.83) is gauge invariant. Let us finally mention a useful formula:
Assume we have a closed planar curve C' with associated area tensor a,,. In case of an
abelian gauge field we have, by Stokes law:

expi?{ dr,A, = exp %FHVG’MV' (9.91)
c

A similar formula is not valid in the non-abelian case if we use the path ordered expo-
nential, but for curves C' of infinitesimal area da,, we have:

Pexpi% dr,A, = exp% (Fw,dau,, + (’)(da2)) : (9.92)
c
from which we get

1
Re tr expi% dr,A, =trl — gtr (Fda,,)? + O(da®) (9.93)
c

A path on the lattice is a connected piecewise linear path along links from one lattice site
to another. We can therefore take over the continuum formula (9.87) if we associate an
element of the gauge group with each (oriented) link (ij) connecting two neighbouring
lattice point ¢ andj (the path from j to @):

UjeG  forlink (i) (9.94)
Again referring to the continuum definition of path ordering we make the assignment:
Uji = Uy (9.95)

The path ordered continuum integral had the transformation properties (9.90) under a
local gauge transformation V(x). We can now introduce the concept of “local” gauge
transformations on the lattice by associating the gauge group G to each lattice site .
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If we for simplicity consider a hypercubical lattice a - Z¢, where a refers to the lattice
spacing, the total gauge group will be the lattice analog of (9.82):

Gtotal: H Gz (996)

ica-Z4

A gauge field configuration is an assignment U;; of group elements to each link on the
lattice. A gauge transformation is an assignment V; of group elements to each lattice site
i on the lattice and the transformation of the gauge field configuration U;; to another one
given by:

Uy — U = ViU, v (9.97)

By this definition a path ordered integral on the lattice:
U = Uiy in-r) - " Uliz,in) Ulin,in) (9.98)

where C'is a connected path of n — 1 links on the lattice from site #; to site i,, has the
same gauge transformation properties as in the continuum. This means that the traces of
closed loops are gauge invariant observables. (In fact one can prove that they constitute
a complete set of gauge invariant observables if there are no additional matter fields).

From the continuum formulas for the path ordered exponentials we have a candidate for
the lattice action by (9.93). To see this let us assume that we have a continuum gauge
field configuration A, () and that we have embedded our hypercubical lattice in R? such
that the lattice sites are denoted z,(i). To each link (ij) connecting z,(j) to x,(i) we
can associate

Uy = Pexpi | Ldn, () Ay (2(t)) = expi(ad, (z) + O(a)) (9.99)

where x,(t) = tx,(i) + (1 — t)z,(j) and z, = (x,(i) + 2,(j))/2. Let us take the smallest
non-trivial loop we can get on the lattice, called a plaquette, which consists of the four links
which makes up an elementary square on the hypercubical lattice. For such a plaquette
p = ijkl with area a®, a being the lattice spacing, we have from (9.93)

1
tr[ — Re tr Up = §a4tr FZ(IJ)V(P) + O(U/G). (9100)

In this formula p(p), v(p) denote the unit vectors in the hyper-plane containing the pla-
quette p, x a point in the plaquette (to the given order in a it does not matter which
one). This means that

1 1 1
SwlU]=fa [1—= > RetrlU, ) - = /ddx (—tr F? + (’)(a2)> (9.101)
Nea ) 90 4 g
for a — 0, provided
2N,
Bea'™t = gf. (9.102)
0

In these formulas Ng = tr I and gy denotes the bare coupling constant of the non-abelian
gauge theory.
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The action (9.101) is called the Wilson action. It is clear that it in no way is unique.
Many other expressions in terms of closed loops of links will have the same limit (9.101)
if we start out with the identification (9.99) between lattice link variables and continuum
variables. However,(9.101) appears to be the simplest expression and we will use it in the
further studies. Note that on the lattice we seem to have no need for the gauge fields
A, themselves. We can work entirely with group variables. From this point of view it
is natural to formulate the integration in the functional integral as an integration over
group variables, rather than over the gauge field variables A,(x). The obvious measure
dU to use is the (up to a normalization) unique measure which is invariant under left and
right translations on the group manifold: U — UyU and U — UU,. It is called the Haar
measure. [t further has the property that if U is close to the identity, i.e. U = expiaA

then
Nga

dU = [ dA*(1 + O(a)) (9.103)
i=1
and we would for smooth configurations, where we can make the identification (9.99),
not only recover the continuum action by (9.101)-(9.102), but also (at least formally) the
usual continuum integration in terms of the gauge fields A,(z). We can therefore define
our lattice gauge theory by the following partition function:

Z(Be) = / H dU, ¢S4Vl (9.104)

where the integration is over all links (ij) of the lattice. Since the Haar measure is
invariant under left and right group translations it is invariant under the “local” gauge
transformations on the lattice, (precisely as the (formal) continuum path integral measure
DA% (z) is invariant under local gauge transformation), and we conclude that the partition
function Z(f¢) is gauge invariant.

We have managed to define in a sensible way the concept of a gauge theory on the lattice
by the partition function Z(f¢g), given by (9.104). It depends on a single coupling constant
Ba. We saw above that for a given continuum configuration, “projected” to the lattice,
the lattice action converged to the correct continuum expression if the lattice spacing
went to zero. We are now interested in the much more subtle question, namely how we
recover a continuum limit (and hopefully a non-trivial interacting field theory) by varying
Ba. The naive continuum limit is B¢ — oo. In this limit each plaquette has only small
fluctuations around its maximum value trU, = 1. This limit can be achieved if each
variable U;; is a (lattice version of a) pure gauge configuration:

Uy =ViV; L. (9.105)

For small fluctuations around such a minimum configuration we can perform a parametriza-
tion of the form (9.99):
U = Viexp(iaAy(x)) V! (9.106)

were x is identified with the midpoint of the link (ij), and in this way formally repeat
the arguments given above for a fixed continuum configuration. Such arguments will
however not tell us anything beyond the usual perturbation theory. In order to extract
non-perturbative information about the theory we have to follow the general strategy of
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finding fixed points for critical statistical systems as a function of the coupling constants
(here () and taking the continuum limit by approaching such a fixed point. Let us
repeat these arguments in a way tuned to our particular problem: We choose a physical
length &, computed from gauge invariant correlation functions by some method (e.g. by
computer simulations, see later) and keep it fixed while the lattice spacing a — 0. This
is achieved by tuning the coupling constant (fg or go) to its critical value (3%) in such a
way that the renormalization group is satisfied:

d¢ 0 0
JEE— E _— _— —_ -1
o (aaa ﬂ(go)ago> £(a,go) =0 (9.107)
and with the S-function (not to be confused with 3g!) defined by
990
= —a—. 9.108
B(g0) a 9a ( )
The solution to (9.107) is
£(a,90) - (9.109)
a,go) =a exp [ —. :
’ o Bl9)

We see that a zero in the [-function corresponds to a divergent correlation length £ in
terms of the lattice spacing. The fixed point which has our interest is s — 00, i..e
go — 0. One could in principle perform a calculation of the 3(gp)-function directly on
the lattice in the limit go — 0, since the lattice provide us with an ultraviolet cut-off.
However, as mentioned in an earlier chapter, the first two coefficients of the (3(gq)-function
are independent of the particular regularization used, and it is easier to use standard
continuum perturbation theory and dimensional regularization (which, like the lattice
regularization, respects gauge invariance). The result is (as mentioned earlier) in four
dimensional space-time that go = 0 is a critical (gaussian) fixed point with a triple zero
in g :

B(9) = —Bog® = H1g” + O(g") (9.110)

where the two universal coefficients for the gauge group G = SU(n) are given by

_11n

34 n?
50_3167#’

bi=3516 (9.111)

If we introduce the fixed physical length scale £;, as mentioned above, we have by inte-
gration of (9.109)

1 0 1
{L=a- (ﬁogg)ﬁ 1% xp (25099 (9.112)

For a fixed &, this equation tells us how the lattice spacing a(fg) scales to zero when we
approach the fixed point S — 0o (go — 0) . Any mass scale m((3g) in the lattice theory,
which we eventually want to associate with a continuum mass should scale such that

m(Ba)ér(Bs)  is finite for (g — oo (9.113)

when both quantities are measured in lattice units, i.e. @ = 1 in (9.112) which defines
£1(Be) since Be = 2Ng /g3 (in d = 4).
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9.5.2 The Wilson loop and the string tension

As an example of a physical quantity which we can measure on the lattice, let us consider
the potential between a heavy quark ¢ and a heavy anti-quark §. Due to the asymptotic
freedom of the non-abelian gauge theory, the gaussian fixed point is an ultraviolet stable
fixed point, and we can do reliable perturbative calculations at short distances where
one finds (almost by definition) that the potential is an ordinary Coulomb potential plus
radiative corrections. For larger distances perturbation theory becomes unreliable and
the non-perturbative lattice formulation might help us to determine it at these distances.
Let us here give a definition of the effective potential between a heavy ¢-q pair which can
be used on the lattice without the need to introduce dynamical fermions. To motive the
lattice definition let us return to the continuum theory and Minkowkian space-time and
consider the simplest case of ordinary QFED. If we have added two static charges they
have the current

Jul@i,t) = [e0°(x; — 2:(q)) — €0* (2 — 2:(2))] Gpo (9.114)

and the action will change:

/F2 5 S[A,j] = %/Fjﬁ/jmu (9.115)

In the path integral the current term will reduce to a line integral due to the §3(x)-
functions in (9.114)
oiS[A] — pSolA] i [ dt[Ao(xi(g)~Ao(i(q)] (9.116)

Since the action is gaussian in the gauge field A, one can perform the functional integral
(after appropriate gauge fixing) and the result is:

<€ifdt[AO(fvi(tI))—AO(fvi(fI)]>0 — V(BT (9.117)

where V(R) is the electrostatic potential between the two charged particles separated a
distance R, V(R) = e/R, T the total time, while

_ DA, () e
(="

(9.118)

It is an interesting exercise to check this result and we provide some details in the following
example:

Example 3: Calculation of Wilson loop

Recall that we have the general formula for gaussian integration in the case of a free
field theory:

210) = [Dasesn (i [ A (AP A + 7))

= Z[0]exp (_Z% //ddxddyjﬂ(x)A(x - y)h(y))
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0
dy

0

dx

Figure 9.5: The square Wilson loop

The partion function is written in Feynman gauge, where the propagator just is
6,,072. It is clear that the expectation value of a Wilson loop can be written as

<exp <ie?{0dquu>> = Z[J]/Z]0]
= exp <—i%€2 %C%CA(x - y)dxudyu>

provided the current J,(z) = ei,(s)0*(x—xz(s)), where s — x,(s) denotes the closed
curve C'. The three-dimensional J-function should be viewed as a d-function in the
directions orthogonal to the curve C.

Let us perform the calculation in 4d, where the propagator is given by

1 1
Ar) = — —.
() 2712 |z |?
We see that the double line integral is singular when x = y and that this singularity
is proportional to the lengt of the curve C', which we will denote P. Let us therefore
introduced a regularized propagator which is cut off to its value at |z| = a (which
we can view as a lattice spacing):

A(z) = A(0) - 1(|z] < a) + Al(x)
A'(z) = A(z) for |z|>a, 0 for |z|<a

1 1
A0) 212 a?
To evaluate the double line integral explicitly we take a square loop as in fig. 9.5.
It is seen that we have the nice interpretion of the double line integral as one where
photons propagate from the infinitesimal line-element dz, to the infinitesimal line-
element dy,. Only parallel lines contribute due to the scalar product dz,dy, and
the contributions split in two, as illustrated in fig. 9.5. The contributions from a
single line in fig. 9.5a is:

[ [ -n= %/OT ay [ dxﬁ _ 2—; T/a— n(T/a)].

The results to the other edges are similar and in addition we have a contribution
from the singular part of the propagator : A(0)aP:

/ / A= y)dedy, = (A(0> + %) aP — % (In(T/a) + In(R/a)).

Ta
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The contribution from fig. 9.5b is

A dx,d —2 ! Td —1
//partb (z = y)dwudy, = _27r2/0 /0 yR2+(x—y)2
2 T -1 1 2 2
. —F<Etan (T/R)—§ln[1+T/R]>.

A similar contribution is obtained by interchanging R and T'.

Let us now consider the limit 7" >> R. In this limit we get:

2 2
<exp (ie%c dquu>> R exp i (c(a)P - Z—W% - % ln(Ra))

where ¢(a) is a cut off dependent constant. In the where T — oo we have, if we
define the potential V' (R) as the coefficient proportional to ¢7":

62

V(R) = 2¢(a) — R

(9.119)

and we recognize Coulombs law, except for the constant ¢(a) which is cut off depen-
dent and represents the “mass” of the infinitely heavy electrons moving along the
Wilson loop. In principle we can absorb the term in a mass renormalization if we
consider dynamical electrons.

We emphasize again that the result should not be a surprise (except maybe for the cut-off
dependent perimeter term which however has a very simple interpretation), since it is
just an expression of the difference in vacuum energy with and without static charges.
Not also that in case we had a theory where the all particles are massive the contribution
from the exchange graphs of fig. 9.5b would fall of exponentially with R since massive
propagators fall off exponentially with the distance. This is in agreement with the fact
that a Yukawa potential is decreasing exponentially with distance.

The formulation is easy to modify for our use: First we can rotate to Euclidean space-
time. The ¢ disappears from the action but not from the exponential of the line integral
since both dt and A, get an i. The rhs of (9.117) is replaced by exp(—V (R)T'). Finally
we can approximate the line integral along the two straight lines by a closed line integral
around a rectangular loop of size R x 1", T' >> R. It can be viewed as the creation of a
heavy ¢ — ¢ pair at some early time, which are then separated a distance R where they
are kept for a long time 7" (such that it makes sense to talk about the potential energy),
after which they are brought together again and annihilated. Once we have such a closed
exponential line integral we also know how to generalize it to a non-abelian case: We use
the path ordered exponential and take the trace. We therefore arrive at the following
mathematical definition of the effective potential between infinitely heavy ¢ — ¢ quarks:

<tr Peifode“A“> = VAT for T — o0 (9.120)

The expectation value in (9.120) is with respect to the pure gauge field action and when
the path ordered exponentials are used in this context we call them Wilson loops. Note
that time plays no special role in (9.120) in accordance with the fact that we have rotated
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to Euclidean space-time, but the shape of the loop is important since only in the limit
T — oo is the interpretation on the rhs valid.

The most popular model for confinement is one where there effectively is an electric
flux string between the quark and the anti-quark. The inspiration for this model is
the abelian superconductor where the magnetic flux does not spread. This means that
(hypothetical) magnetic monopoles inside such a superconductor would be connected by
a flux string, and there would be a linear potential between them, since the flux does
not spread, contrary to the situation in empty space. A number of (not so convincing)
arguments have been given why the color-electric flux string should behave in the same
way in non-abelian gauge theories. The are other reasons which make the linear potential
special: It can be shown that it is impossible in a relativistic field theory to have a
potential which grows faster with distance and finally such a potential is precisely the one
which a relativistic string has to have. In case the potential ¢s linear:

V(R)=0R (9.121)
this implies that the expectation value of the Wilson loop will go like
e”VRIT — gm0 (9.122)

where A is the area of the Wilson loop (which we assume is planar). In this case it
is a hypothesis that the expectation value of a planar Wilson loop will fall of like the
exponential of the area, (essentially) independent of the shape of the loop. The constant
o in front of the area term is call the string tension. The notation comes from the fact
that a relativistic string has precisely the potential (9.121): the force needed to stretch
the string one unit of length is o (and unlike an ordinary rubber string it is independent
of the length we have already stretched the string from equilibrium). If we denote the
Wilson loop corresponding to a planar curve C' spanning an area A(C) by W(C) the
conjecture is that

(W(C)) =e ) for A(C) — o0 (9.123)

and this may be viewed as a criterion for confinement.

Let us now return to the lattice formulation. The Wilson loops belong to the generic class
of observables we have already considered. Explicitly we can write:

(9.124)

l€boundary RXT

WR,T = tr [ H Ul

where the product is over the 2(R + T') links around a rectangular loop enclosing R X
T plaquettes. In principle we can now try to measure the exponential fall off of the
expectation values of the Wilson loops by numerical methods and in this way we will
extract what is called the bare string tension oy (3¢) (assuming that (W (C)) really falls of
as the area). This bare string tension is just a number and will, for dimensional reasons,
be related to the physical string tension o), by

0(Be) = opna’®(Be) (9.125)

where a(fg) denotes the lattice spacing which (in four dimensions) is given as a function
of B¢ by (9.112). Only if 0¢(3¢)/a*(Bg) has a finite limit for 3¢ — oo can we say that
the non-abelian gauge theories have a linear confining heavy ¢ — ¢ potential.
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By now there seems to be substantial evidence, collected from years of numerical
simulations on the fastest computers, that o,, > 0. If correct, this means that QCD
indeed is a theory which confines quarks. At this point a few words should be said about
the numerical simulations (we use here the string tension as an example, but similar
remarks are valid for all other non-perturbative mass parameters extracted from numerical
simulations). The extraction of oy, from the raw numerical data, i.e. (Wgyr), is not
straight forward. For small R we are clearly probing the perturbative part of V(R),
not the linear part. Where is the cross over, if there is a sharp cross over? And even
in the region where the string tension dominates, the dynamics of the string might be
important: Long strings will vibrate and such vibrations actually gives corrections to
the linear potential. Apart from these problems (Wgyr) contains terms which, although
formally subdominant for large values of R and 7T, can be very important. In reality we
have to fit to a formula like

<WR><T> = exp(—ag(ﬁg)RT — C1 (ﬁG)(R + T) + Co + .- ) (9126)

where the problem is that the constant ¢;(3¢) does not scale to zero, unlike oy(f¢) which
falls off exponentially with 3g. This non-scaling is understood as follows: the area law is
(in a perturbative language) due to exchange of gluons between distant (opposite) parts of
the Wilson loop, but there are short distance contributions, essentially between neighbour-
ing links in the lattice and it is precisely the same singular perimeter term we encountered
in ex. 9.3. These contributions do not reflect any continuum physics and should in a the-
ory with dynamical quarks be absorbed in mass and wave function renormalizations of
the quark Lagrangian. Here they will just appear as constants. However, since o(fg) is
exponentially small for large (¢ it means that R x T must be exponentially larger than
R + T in terms of lattice distances if the area term shall dominate. This in turn implies
that (Wgyr) is exponentially small for large (g values if we at the same time require
that the distance R is larger than the distances where we expect perturbative calculations
to be reliable. The same conclusion is reached if we just look at the basic problem of
determining o, from (9.125). We want to take the limit fz — oo while keeping a fixed
physical length &, unchanged. Clearly this requires exponentially growing distances R
measured in lattice units since a(f3s) goes exponentially fast to zero according to (9.112).
Since the interesting values of (Wgyr) will be so small we get in addition problems with
errorbars, statistical independence of configurations on the very large lattices needed etc..

In summary the situation resembles a lot the situation encountered in “real” experi-
mental physics, where there sometimes is a long way from the raw data to the physical
quantities extracted. Nevertheless it has been possible due to joint efforts of international
collaborations by extensive numerical simulations to construct the potential V' (R) out to
the physical distances of 1-2 fermi. The picture is a potential which at small distances
agrees with perturbation theory and at larger distances change to a linear potential. Be-
fore this can be considered a proof that QCD is a confining theory it would be preferable
to be able to construct the potential out to larger distances, but it requires a huge increase
in computer power.

9.5.3 Inclusion of matter fields

The lattice approach can be used to address a number of other questions in QCD and
the standard model, for which perturbation theory is inappropriate. We have already



490 LAl 110 rfiiid/ 1 arnJinvy

mentioned the wish to verify that the theory correctly gives the hadron masses. The
question of chiral symmetry breaking in QQC' D, the question about the behaviour of quarks
and gluons at high temperatures and high densities and the question of phase transitions
in the standard model at high temperature. To address some of the mentioned questions
we have to couple gauge fields to matter fields in a gauge invariant way on the lattice. For
scalar fields there are no problems. The scalar fields ¢(z) are placed on the lattice sites i.
Assume that ¢(z) — V(2)¢(x) under a local gauge transformation (we consider here the
simplest case where ¢(x) transforms in the fundamental representation, generalization
to other cases is obvious). The lattice version is ¢; — V;¢;, and the gauge invariant
continuum observables

o1 (y) |Pei ooy o] 4z (9.127)

are replaced by
Ol Uicijsiy 6 (9.128)

The link variables act as parallel transport of ¢; to site 7 and this ensures that ¢; and
Uic:j—iy@; transforms in the same way, precisely as in the continuum. This is especially
true for neighbouring variables ¢; and ¢; connected by the link variable U;; and we can
introduce the lattice covariant derivative in analogue with the introduction of the ordinary
lattice derivative:

Oup(z) = bjup— ¢,
Du¢(l‘) — ¢j+ﬂ_Uj+ﬁ,j¢j- (9129)

It is now trivial to “latticize” the kinetic term |D,¢|*>. The final action for a gauge-Higgs
system on the lattice becomes:

S[6,U] = —k Y RedlUyd; + n Y oléi + A (616:)° — o X Retrl,  (9.130)

(i5) i i P
where i denote the sites, (ij) the links and p the plaquettes. As in the case of the pure
gauge field there is of course a considerable freedom in the choice of lattice actions which
reduce to the continuum version in the naive scaling limit.

In principle the fermions can be introduced in the same way. We have no space to
discuss this in detail. Let us only mention one point: there are problems with fermions on
the lattice: It is not known how to introduce chiral fermions on the lattice. It turns out
that the spectrum of fermions is 2¢ times degenerate on a d-dimensional lattice. It is not
difficult to remove the additional artificial massless (lattice) excitations by adding mass
counter terms to the Lagrangian. However, if we insists on dealing with chiral fermions
this is unfortunate, since we break explicitly the chiral symmetry by adding such mass
terms. In a theory like the electroweak theory chiral symmetry is very important in the
fermionic sector and it would be preferable not to start by breaking it explicitly, since
we then have to recover it again in some way in the continuum limit. This problem is
intimately related to the question of chiral anomalies discussed in a continuum context
earlier. The point is that the lattice provides a gauge invariant regularization of the theory.
If we had no problems with chiral invariance we would have a theory which at the quantum
level is both gauge- and chiral invariant. This would violate the anomaly equations of the
continuum (recall that the standard model was considered a consistent theory because
the fermion content is such that the anomalies cancel between the different species). A
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convincing way of introducing chiral fermions on the lattice is still not known, but strictly
speaking it could be argued that the same is true in the continuum formulation. As an
example we can consider dimensional regularization. It is gauge invariant, but it has
not been fully proven that the perturbative chiral sector is well defined to all orders in
perturbation theory. The problem is that 5 has no natural definition away from even
dimensions. From this point of view one can say that the lattice regularization is no
worse than other types of gauge invariant regularization. It just makes the problem more
visible.

9.5.4 Numerical simulations

We now turn to point (3) mentioned in the introduction to this chapter. As already
mentioned a number of times the fast modern computers offer the possibility of performing
large scale simulations of lattice gauge theories. Omne can say that the usefulness of
lattice gauge theories to some extend is linked to this possibility of performing computer
simulations since it is difficult to perform analytic calculations within the formalism. Let
us therefore briefly describe the simplest approach to such simulations, just to give the
reader a feeling of the principles involved. The topic of numerical simulations of large
statistical systems is by now a vast one, and it would take many chapters to cover the
different methods which can be used. Since the region of coupling constant space which
is interesting is the one close the phase transitions where the correlation length diverges,
and since one in addition often has to extract subleading behaviour from the raw data,
extraction of reliable information from critical systems by numerical methods is an art,
more than a question of trivial technique.

The one most important feature when we try the calculate the functional integral on
a large lattice is the huge number of variables. On a 16* lattice we have 16*-4-8 ~ 2-107
variables for a pure SU(3) theory. Let us in the following consider lattice gauge theories
and an observable O(U). A typical observable could be a Wilson loop of a given size
R x T. We want to calculate the expectation value of O(U) defined by:

L, dU, O(U) e S
(OW) = = 07, 501

(9.131)

A direct attempt to calculate such high dimensional integrals would be doomed to fall,
since most configurations contribute an exponentially small amount to the integral. As
soon as we are far away from the minimum of S[U] the configurations play little role in the
integral. To get an efficient approximation to the integral we need an importance sampling
of configurations U; which we want to use in our evaluation of (9.131). Suppose we select
a sequence of lattice configurations {U;};, i = 1,...,n according to a given probability
distribution P[U]. We can then approximate the expectation value (9.131) by

0. = L OWU(@)e TP U(i)]
" iey e SUOIPHU(0)]

(9.132)

and it follows from the general identity valid for any probability distribution P(U) and
and function f(U)

1 n
=S FU@W)PU() — /de(U)P(U) for n — oo, (9.133)

n:4
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that
lim 0, = (0). (9.134)

It is not surprising that the optimal choice of P[U] is the Boltzmann weight e~V itself
and we have the formula:

(0) = lim — >~ O(U(i)) (9.135)

where the set of independent lattice configurations {U,;(i)} are chosen according to the
probability distribution .
P[U(i)] oc e SIWOIL, (9.136)

The problem of evaluating (O) is now reduced to the problem of generating an en-
semble of independent lattice configurations {U;(i)}, i = 1,...,n according to (9.136). A
number of computer algorithms exists for doing this. Let us only mention a very general
(but for the same reason not alway the most efficient) one called the Metropolis Algorithm.

Given a lattice configuration U;, where [ runs over all links, we want to generate a new
lattice configuration U]. We do this by changing a U, at a link according to a procedure
to be described shortly. This induces a change in the action :AS. If AS < 0 we accept
the change and if AS > 0 the change is accepted with the conditional probability e=2%.
In practise this means that one picks a random number z €]0, 1], selected with uniform
probability and accept the change if e=®° > z. All this takes place at a given link and one
says that an attempt to update the link has been made. After this one moves to another
link and repeats the process. By a so-called sweep one means that an attempt to update
each link on the lattice has been made. If a lattice configuration {U;(2)} is the results
of a sweep starting from the configuration {U;(1)} the two configurations are of course
not independent. After a sufficient number of sweeps we will however have obtained a
configuration which is independent of the first one and if we assume the first one was
chosen with the correct Boltzmann distribution the same will be the case for the second
one. They will therefore qualify as configurations in the sum (9.135). Usually it is not
easy to determine when two configurations are independent and often one will have to
analyse the behaviour of O, from (9.132) as a function of n in order to determine how
many sweeps are needed in order to generate independent configurations.

The final ingredient in the Metropolis scheme is the specification of the choice of
transition W (U, — U]) for a given link. The transition W has to be chosen such that
successive applications makes it possible to cover the whole gauge group G. It is also
natural to choose it to cover the group space uniformly, since we have at this stage
actually been a little sloppy with the measure factor dU. This is a uniform measure on
the group and by choosing W uniform too we respect the Haar measure in the correct
way. In practise one chooses W in the form:

U — AU U, (9137)

where AU is selected among a set of random matrices chosen in a suitable neighbourhood
of the identity I € GG. In this way one can monitor the change in the action AS and ensure
that the acceptance rate in the test e=®° > x is not too small. How to make the selection
of the random matrices AU depends on the group and we have to refer to the literature.
(For SU(2) there is a simple way, since SU(2) can be mapped to the 3-sphere S* by means
of its representation by Pauli matrices, and the Haar measure in this representation just
is the uniform measure on S3.)
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This description completes the ingredients needed for a numerical simulation (and we
encourage the reader to write her/his own test program). Let us just end this chapter by
explaining why the Metropolis algorithm will generate the correct probability distribution.
Let us consider the relation between the n'® and the (n + 1) updating. The probability
P,.1(U) of ending at a given configuration® U, if we start out with a probability distri-
bution P,(U) and assume that the probability for a transition U — U’ is W(U — U'), is
given by

Poa(U) = WU = U)P,(U")

= PU)+ X (P(UYW(U = U) = P(U)YW(U = U"))  (9.138)

where we have used the normalization

WU —-U")=1. (9.139)

UI

From (9.138) we see that a sufficient condition for a stationary probability distribution
P,(U) = P(U) independent of n is that

PYW(U = U')=PUYWU -U) VULU' (9.140)

If W is chosen such that it satisfies (9.140) we say that it fulfills detailed balance. By
summing over U in (9.140) we get

S POW(U —U")=P(U) (9.141)

and this tells us that the distribution W(U — U’), viewed as a matrix W(U,U’), in the
space of configurations has P(U) as eigenvector with eigenvalue 1. Due to (9.139) and the
factS that W (U, U’) > 0 this is the maximal eigenvalue and P(U) its unique eigenvector”.
Since any probability distribution Py(U) will have a scalar product different from zero
with P(U) (assuming that P(U) > 0V U) we see that P,, = W"P, will converges to c- P,
where ¢ is the scalar product of P and P, considered as vectors. Detailed balance is thus
sufficient to ensure convergence to the correct probability distribution.

Let us now check that the Metropolis algorithm satisfies detailed balance (9.140) with
respect to the Boltzmann weight P(U) oc e=%(). The transition probability of Metropolis
is

1 if S(U)> S
WU —=U") = { e~ (SWH=SW) if S(U) < S(U") (9.142)
This means that
!
WU U) _ ~sw)-50) o eSIW(U - U) =eUIW (U - U). (9.143)

W (U = U)
We conclude that (9.140) is satisfied with P(U) oc e=%(U).

®We use the short hand notation U for a complete lattice configuration {U;}.

6The condition W (U,U’) > 0 expresses the fact that one should be able to reach any element from
any other element, i.e. ergodicity of the Markov process W. Strictly speaking it need not be satisfied in a
single step, as already mentioned above.

Tt follows from the so-called Perron-Frobenius theorem of linear analysis.



